1
|
Chen J, Ding S, Gao C, Chen C, An T. Green disposal of waste smartphone protective film: Efficiency, mechanism, bench-scale test and secondary waste reutilization. J Environ Sci (China) 2025; 151:692-702. [PMID: 39481974 DOI: 10.1016/j.jes.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 11/03/2024]
Abstract
The manufacture and obsolescence of smartphones produce numerous waste plastic accessories (e.g., waste smartphone protective film (WSPF)), possessing immense potential for recycling. However, available recycling technologies have limitations such as substrate damage and secondary pollutant generation. The present study aimed to develop a green disposal method that not only recycled polyethylene terephthalate (PET) from WSPF, but also reused the stripped polyacrylate (PAA) adhesive as an adsorbent to reduce solid waste generation. When the WSPF was treated in 1 mol/L NaOH solution at 90 °C, the PAA hydrolyzed to two main by-products of 1-butanol and 2-ethylhexanol, weakening the binding strength between PAA and PET and then efficient separation of them. Further bench-scale test revealed that over 97.2% of detachment efficiency toward PAA was achieved during continuous treatment of 17 batches of WSPF (200 g for each) without supplement of NaOH and generation of wastewater. Meanwhile, the economic evaluation indicated that the recycling method would generate a net profit margin of 647% for the second year without considering the incurrence of new cost and input. Additionally, the pyrolysis of waste PAA enabled its conversion into potential adsorbent, which showed 2 to 4 times enhanced adsorption capacity toward styrene and ethyl acetate after modification with NaOH solution. This study provides a green method for recycling waste plastics and inspires a referable solution for solid waste treatment in the smartphone industry.
Collapse
Affiliation(s)
- Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shunyu Ding
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chenxu Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Canhui Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Srichola P, Witthayolankowit K, Sukyai P, Sampoompuang C, Lobyam K, Kampakun P, Toomtong R. Recycling of Nanocellulose from Polyester-Cotton Textile Waste for Modification of Film Composites. Polymers (Basel) 2023; 15:3324. [PMID: 37571218 PMCID: PMC10422628 DOI: 10.3390/polym15153324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Textile waste has emerged as a critical global challenge, with improper disposal practices leading to adverse environmental consequences. In response to this pressing issue, there is growing interest in recycling textile waste containing cellulose as an alternative approach to reducing the impact of industrial waste on the environment. The objective of this research is to investigate the extraction and characterization of nanocellulose from polyester-cotton textile waste as a potential solution to address the growing concerns of waste management in the textile industry. To obtain nanocellulose, a comprehensive process involving alkaline sodium hydroxide (NaOH) treatment of the polyester-cotton textile (35% PET and 65% cotton) was employed, resulting in average yield percentages ranging from 62.14% to 71.21%. To achieve the complete hydrolysis of PET polyester in the blends, second hydrolysis was employed, and the optimized condition yield cotton fiber was 65.06 wt%, relatively close to the theoretical yield. Subsequently, the obtained cellulosic material underwent an acid hydrolysis process using 70 percent (v/v) sulfuric acid (H2SO4) solution at 45 °C for 90 min, resulting in nanocellulose. Centrifugation at 15,000 rpm for 15 min facilitated the separation of nanocellulose from the acid solution and yielded 56.26 wt% at optimized conditions. The characterization of the nanocellulose was carried out utilizing a comprehensive array of techniques, including absorption, transmission, and reflection spectra, and Fourier transform infrared. The characterization results provide valuable insights into the unique properties of nanocellulose extracted from textile waste. In this research, the obtained nanocellulose was mixed with PVA and silver nanoparticle to form biodegradable film composites as the reinforcement. In comparison, biodegradable film of PVA:nanocellulose 9.5:0.5 with silver nanoparticle 0.3 wt% and glycerol as a plasticizer exhibits better tensile strength (2.37 MPa) and elongation (214.26%) than the PVA film with normal cellulose. The prepared biodegradable film was homogeneous and had a smooth surface without the internal defect confirmed by the CT scan. This result opens avenues for enhancing the quantities of eco-friendly film composites, potentially replacing conventional plastic films in the future.
Collapse
Affiliation(s)
- Preeyanuch Srichola
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kuntawit Witthayolankowit
- Faculty of Science, Department of Chemistry, Kasetsart University, Chatucak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Faculty of Agro-Industry, Department of Biotechnology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Chaiyaporn Sampoompuang
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Keowpatch Lobyam
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapakorn Kampakun
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Raveewan Toomtong
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Kaabel S, Arciszewski J, Borchers TH, Therien JPD, Friščić T, Auclair K. Solid-State Enzymatic Hydrolysis of Mixed PET/Cotton Textiles. CHEMSUSCHEM 2023; 16:e202201613. [PMID: 36165763 DOI: 10.1002/cssc.202201613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Waste polyester textiles are not recycled due to separation challenges and partial structural degradation during use and recycling. Chemical recycling of polyethylene terephthalate (PET) textiles through depolymerization can provide a feedstock of recycled monomers to make "as-new" polymers. While enzymatic PET recycling is a more selective and more sustainable approach, methods in development, however, have thus far been limited to clean, high-quality PET feedstocks, and require an energy-intensive melt-amorphization step ahead of enzymatic treatment. Here, high-crystallinity PET in mixed PET/cotton textiles could be directly and selectively depolymerized to terephthalic acid (TPA) by using a commercial cutinase from Humicola insolens under moist-solid reaction conditions, affording up to 30±2 % yield of TPA. The process was readily combined with cotton depolymerization through simultaneous or sequential application of the cellulase enzymes CTec2®, providing up to 83±4 % yield of glucose without any negative influence on the TPA yield.
Collapse
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
- Department of Bioproducts and Biosystems, Aalto University, 02150, Espoo, Finland
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Tristan H Borchers
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - J P Daniel Therien
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| |
Collapse
|