1
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
2
|
Wang T, Chen Z, Gong W, Xu F, Song X, He X, Fan M. Electrospun Carbon Nanofibers and Their Applications in Several Areas. ACS OMEGA 2023; 8:22316-22330. [PMID: 37396209 PMCID: PMC10308409 DOI: 10.1021/acsomega.3c01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023]
Abstract
Carbon nanofibers (CNFs) have a broad spectrum of applications, including sensor manufacturing, electrochemical catalysis, and energy storage. Among different manufacturing methods, electrospinning, due to its simplicity and efficiency, has emerged as one of the most powerful commercial large-scale production techniques. Numerous researchers have been attracted to improving the performance of CNFs and exploring new potential applications. This paper first discusses the working theory of manufacturing electrospun CNFs. Next, the current efforts in upgrading the properties of CNFs, such as pore architecture, anisotropy, electrochemistry, and hydrophilicity, are discussed. The corresponding applications due to the superior performances of CNFs are subsequently elaborated. Finally, the future development of CNFs is discussed.
Collapse
Affiliation(s)
- Tongtong Wang
- College
of Advanced Materials Engineering, Jiaxing
Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- Jiaxing
key Laboratory of Preparation and Application of Advanced Materials
for Energy Conservation and Emission Reduction, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Zhe Chen
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Weibo Gong
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Fei Xu
- College
of Advanced Materials Engineering, Jiaxing
Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
- Jiaxing
key Laboratory of Preparation and Application of Advanced Materials
for Energy Conservation and Emission Reduction, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Xin Song
- Faculty
of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Xin He
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- College
of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan Province, 610059 People’s Republic
of China
| | - Maohong Fan
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- College of
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles. MATERIALS 2022; 15:ma15041383. [PMID: 35207925 PMCID: PMC8879461 DOI: 10.3390/ma15041383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/17/2023]
Abstract
An ethanol gas sensor based on carbon nanofibers (CNFs) with various densities and nanoparticle functionalization was investigated. The CNFs were grown by means of a Plasma-Enhanced Chemical Vapor Deposition (PECVD), and the synthesis conditions were varied to obtain different number of fibers per unit area. The devices with a larger density of CNFs lead to higher responses, with a maximal responsivity of 10%. Furthermore, to simultaneously improve the sensitivity and selectivity, CNFs were decorated with gold nanoparticles by an impaction printing method. After metal decoration, the devices showed a response 300% higher than pristine devices toward 5 ppm of ethanol gas. The morphology and structure of the different samples deposited on a silicon substrate were characterized by TEM, EDX, SEM, and Raman spectroscopy, and the results confirmed the presence of CNF decorated with gold. The influence of operating temperature (OT) and humidity were studied on the sensing devices. In the case of decorated samples with a high density of nanofibers, a less-strong cross-sensitivity was observed toward a variation in humidity and temperature.
Collapse
|
4
|
Xu W, Jambhulkar S, Ravichandran D, Zhu Y, Lanke S, Bawareth M, Song K. A mini‐review of microstructural control during composite fiber spinning. POLYM INT 2022. [DOI: 10.1002/pi.6350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Weiheng Xu
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Sayli Jambhulkar
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Dharneedar Ravichandran
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Yuxiang Zhu
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Shantanu Lanke
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy Arizona State University Tempe AZ USA
| | - Mohammed Bawareth
- Mechanical Engineering System, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Kenan Song
- Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| |
Collapse
|
5
|
Fernando N, Chinnappan A, Aziz A, Abdelkader A, Ramakrishna S, Welland ME. Flexible free-standing Ni-Mn oxide antenna decorated CNT/nanofiber membrane for high-volumetric capacitance supercapacitors. NANOSCALE 2021; 13:19038-19048. [PMID: 34757347 DOI: 10.1039/d1nr03700e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is growing demand for lightweight flexible supercapacitors with high electrochemical performance for wearable and portable electronics. Here, we spun nanoparticles of nickel-manganese oxides along with carbon nanotubes into carbon nanofibers and engineered a 3D networked Ni-Mn oxides/CNT@CNF free-standing membrane for flexible supercapacitor applications. The electrospinning process controlled the nanoparticle aggregation while subsequent heat treatment generates nanochannels in the fibres, resulting in a very porous tubular nanocomposite structure. The preparation process also enabled good interfacial contact between the nanoparticles and the conductive carbon network. The resulting Ni-Mn oxides/CNT@CNF membrane displays high mass loading (Ni-Mn oxides) of 855 mg cm-3 and low CNT incorporation of ∼0.4%. The outstanding porous structure, synergy of the carbon with Ni-Mn oxides, and fast and facile faradaic reactions on the electrode were responsible for the superior volumetric capacitance of 250 F cm-3 at 1 A cm-3, energy density as high as 22 mW h cm-3 and an excellent power density of 12 W cm-3. Despite the low CNT loading, the hybrid electrode exhibits excellent cycling performance with capacitance retention of 96.4% after 10 000 cycles evidencing a well-preserved Ni-manganese oxide nanostructure throughout the cycling. The resulting outstanding electrochemical performances of the Ni-Mn oxides/CNT@CNF synergic system offer new insights into effective utilization of transition metal oxides for establishing high-performance flexible supercapacitors within a confined volume.
Collapse
Affiliation(s)
- Niranjala Fernando
- Faculty of Science and Technology, Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB, UK.
| | - Amutha Chinnappan
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Atif Aziz
- Nanoscience Centre, Department of Engineering, University of Cambridge, CB3 0FF, UK.
| | - Amr Abdelkader
- Faculty of Science and Technology, Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB, UK.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Mark E Welland
- Nanoscience Centre, Department of Engineering, University of Cambridge, CB3 0FF, UK.
| |
Collapse
|
6
|
Folino A, Triolo C, Petrovičová B, Pantò F, Zema DA, Santangelo S. Evaluation of Electrospun Self-Supporting Paper-Like Fibrous Membranes as Oil Sorbents. MEMBRANES 2021; 11:515. [PMID: 34357165 PMCID: PMC8306189 DOI: 10.3390/membranes11070515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
Presently, adsorption/absorption is one of the most efficient and cost-effective methods to clean oil spill up. In this work, self-supporting paper-like fibrous membranes were prepared via electrospinning and carbonisation at different temperatures (500, 650 or 800 °C) by using polyacrylonitrile/polymethylmethacrylate blends with a different mass ratio of the two polymers (1:0, 6:1 or 2:1). After morphological and microstructural characterisation, the as-produced membranes were evaluated as sorbents by immersion in vegetable (sunflower seed or olive) and mineral (motor) oil or in 1:4 (v:v) oil/water mixture. Nitrogen-rich membrane carbonised at the lowest temperature behaves differently from the others, whose sorption capacity by immersion in oil, despite the great number of sorbent and oil properties involved, is mainly controlled by the fraction of micropores. The encapsulation of water nanodroplets by the oil occurring during the immersion in oil/water mixture causes the oil-from-water separation ability to show an opposite behaviour compared to the sorption capacity. Overall, among the investigated membranes, the support produced with 2:1 mass ratio of the polymers and carbonisation at 650 °C exhibits the best performance both in terms of sorption capacity (73.5, 54.8 and 12.5 g g-1 for olive, sunflower seed and motor oil, respectively) and oil-from-water separation ability (74, 69 and 16 for olive, sunflower seed and motor oil, respectively).
Collapse
Affiliation(s)
- Adele Folino
- Department of Agriculture, Mediterranean University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy;
| | - Claudia Triolo
- Department of Civil, Energy, Environmental and Materials Engineering (DICEAM), Mediterranean University, Località Feo di Vito, I-89122 Reggio Calabria, Italy; (C.T.); (B.P.)
| | - Beatrix Petrovičová
- Department of Civil, Energy, Environmental and Materials Engineering (DICEAM), Mediterranean University, Località Feo di Vito, I-89122 Reggio Calabria, Italy; (C.T.); (B.P.)
| | - Fabiolo Pantò
- Institute of Advanced Technologies for Energy (ITAE), Italian National Research Council (CNR), I-98126 Messina, Italy;
| | - Demetrio A. Zema
- Department of Agriculture, Mediterranean University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy;
| | - Saveria Santangelo
- Department of Civil, Energy, Environmental and Materials Engineering (DICEAM), Mediterranean University, Località Feo di Vito, I-89122 Reggio Calabria, Italy; (C.T.); (B.P.)
| |
Collapse
|
7
|
Touja J, Gabaudan V, Farina F, Cavaliere S, Caracciolo L, Madec L, Martinez H, Boulaoued A, Wallenstein J, Johansson P, Stievano L, Monconduit L. Self-supported carbon nanofibers as negative electrodes for K-ion batteries: Performance and mechanism. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Sukanya R, Chen SM. Amorphous cobalt boride nanosheets anchored surface-functionalized carbon nanofiber: An bifunctional and efficient catalyst for electrochemical sensing and oxygen evolution reaction. J Colloid Interface Sci 2020; 580:318-331. [PMID: 32688123 DOI: 10.1016/j.jcis.2020.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Development of new metal boride with carbon composite is an emerging class of catalyst and it brings enormous curiosity in the material community because of their potential intriguing properties. Here, we describe a new type of amorphous cobalt boride (A-CoB) nanosheet anchored on the surface of functionalized carbon nanofiber (A-CoB/ƒ-CNF) by a simple method. The emerged A-CoB/ƒ-CNF composite was demonstrated to possess great bifunctional electrocatalytic activity for the electrochemical sensing of antibiotic drug nitrofurantoin (NFT) and oxygen evolution reaction (OER). The prepared A-CoB/ƒ-CNF composite was characterized by various analytical and spectroscopic techniques such as XRD, FE-SEM, HR-TEM, Raman, and XPS analysis. The result from the electrochemical impedance spectroscopy confirms that the A-CoB/ƒ-CNF composite shows high electrical conductivity and the number of electron transferability for the NFT sensor and OER which is due to the presence of abundant active sites/large surface area in A-CoB, and synergistic effect between the A-CoB and ƒ-CNF. As an electrochemical sensor, the A-CoB/ƒ-CNF modified electrode shows substantial sensitivity (3.13 μA μM-1 cm-2), wider linear response range (0.01- 527 μM), and lower detection limit (0.003 μM) as-compared to the previously reported noble and non-noble metal-based electrocatalyst for NFT sensor. As well, the A-CoB/ƒ-CNF composite demonstrates superior OER activity with low overpotential and small Tafel slope value of 0.35 V and 173 mV/dec, respectively, which shows advanced kinetics than noble metal catalysts. Based on the results, we believed that the present work gives clear evidence for the preparation of transition metal boride anchored carbon material with an outstanding catalytic activity, and hence, it can be also extended to further electrochemical applications.
Collapse
Affiliation(s)
- Ramaraj Sukanya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
9
|
Mooste M, Kibena‐Põldsepp E, Vassiljeva V, Kikas A, Käärik M, Kozlova J, Kisand V, Külaviir M, Cavaliere S, Leis J, Krumme A, Sammelselg V, Holdcroft S, Tammeveski K. Electrospun Polyacrylonitrile‐Derived Co or Fe Containing Nanofibre Catalysts for Oxygen Reduction Reaction at the Alkaline Membrane Fuel Cell Cathode. ChemCatChem 2020. [DOI: 10.1002/cctc.202000658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marek Mooste
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | | | - Viktoria Vassiljeva
- Department of Materials and Environmental Technology Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Arvo Kikas
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Maike Käärik
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Jekaterina Kozlova
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Vambola Kisand
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Marian Külaviir
- Institute of Ecology and Earth Sciences University of Tartu Vanemuise 46 51014 Tartu Estonia
| | - Sara Cavaliere
- ICGM Univ. Montpellier, CNRS, ENSCM Montpellier 34095 France
- Institut Universitaire de France (IUF) Paris 75231 France
| | - Jaan Leis
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Andres Krumme
- Department of Materials and Environmental Technology Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Väino Sammelselg
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Steven Holdcroft
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby, BC V5A 1S6 Canada
| | - Kaido Tammeveski
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
10
|
Tan HL, Sanira Putri MK, Idris SS, Hartikainen N, Abu Bakar NF, Keirouz A, Radacsi N. High‐throughput
fabrication of carbonized electrospun polyacrylonitrile/poly(acrylic acid) nanofibers with additives for enhanced electrochemical sensing. J Appl Polym Sci 2020. [DOI: 10.1002/app.49341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huey Ling Tan
- Faculty of Chemical EngineeringUniversiti Teknologi MARA Shah Alam Selangor Malaysia
| | - Maria Kana Sanira Putri
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| | - Siti Shawalliah Idris
- Faculty of Chemical EngineeringUniversiti Teknologi MARA Shah Alam Selangor Malaysia
| | - Niklas Hartikainen
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| | - Noor Fitrah Abu Bakar
- Faculty of Chemical EngineeringUniversiti Teknologi MARA Shah Alam Selangor Malaysia
| | - Antonios Keirouz
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings Edinburgh UK
| |
Collapse
|