1
|
ExtrIntDetect—A New Universal Method for the Identification of Intelligent Cooperative Multiagent Systems with Extreme Intelligence. Symmetry (Basel) 2019. [DOI: 10.3390/sym11091123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this research, we define a specific type of performance of the intelligent agent-based systems (IABSs) in terms of a difficult problem-solving intelligence measure. Many studies present the successful application of intelligent cooperative multiagent systems (ICMASs) for efficient, flexible and robust solving of difficult real-life problems. Based on a comprehensive study of the scientific literature, we conclude that there is no unanimous view in the scientific literature on machine intelligence, or on what an intelligence metric must measure. Metrics presented in the scientific literature are based on diverse paradigms. In our approach, we assume that the measurement of intelligence is based on the ability to solve difficult problems. In our opinion, the measurement of intelligence in this context is important, as it allows the differentiation between ICMASs based on the degree of intelligence in problem-solving. The recent OutIntSys method presented in the scientific literature can identify systems with outlier high and outlier low intelligence from a set of studied ICMASs. In this paper, a novel universal method called ExtrIntDetect, defined on the basis of a specific series of computing processes and analyses, is proposed for the detection of the ICMASs with statistical outlier low and high problem-solving intelligence from a given set of studied ICMASs. ExtrIntDetect eliminates the disadvantage of the OutIntSys method with respect to its limited robustness. The recent symmetric MetrIntSimil metric presented in the literature is capable of measuring and comparing the intelligence of large numbers of ICMASs and based on their respective problem-solving intelligences in order to classify them into intelligence classes. Systems whose intelligence does not statistically differ are classified as belonging to the same class of intelligent systems. Systems classified in the same intelligence class are therefore able to solve difficult problems using similar levels of intelligence. One disadvantage of the symmetric MetrIntSimil lies in the fact that it is not able to detect outlier intelligence. Based on this fact, the ExtrIntDetect method could be used as an extension of the MetrIntSimil metric. To validate and evaluate the ExtrIntDetect method, an experimental evaluation study on six ICMASs is presented and discussed.
Collapse
|
2
|
Multilevel and Multiscale Deep Neural Network for Retinal Blood Vessel Segmentation. Symmetry (Basel) 2019. [DOI: 10.3390/sym11070946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Retinal blood vessel segmentation influences a lot of blood vessel-related disorders such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular disorders, etc. It is found that vessel segmentation using a convolutional neural network (CNN) showed increased accuracy in feature extraction and vessel segmentation compared to the classical segmentation algorithms. CNN does not need any artificial handcrafted features to train the network. In the proposed deep neural network (DNN), a better pre-processing technique and multilevel/multiscale deep supervision (DS) layers are being incorporated for proper segmentation of retinal blood vessels. From the first four layers of the VGG-16 model, multilevel/multiscale deep supervision layers are formed by convolving vessel-specific Gaussian convolutions with two different scale initializations. These layers output the activation maps that are capable to learn vessel-specific features at multiple scales, levels, and depth. Furthermore, the receptive field of these maps is increased to obtain the symmetric feature maps that provide the refined blood vessel probability map. This map is completely free from the optic disc, boundaries, and non-vessel background. The segmented results are tested on Digital Retinal Images for Vessel Extraction (DRIVE), STructured Analysis of the Retina (STARE), High-Resolution Fundus (HRF), and real-world retinal datasets to evaluate its performance. This proposed model achieves better sensitivity values of 0.8282, 0.8979 and 0.8655 in DRIVE, STARE and HRF datasets with acceptable specificity and accuracy performance metrics.
Collapse
|
3
|
An Image Segmentation Method Based on Improved Regularized Level Set Model. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When the level set algorithm is used to segment an image, the level set function must be initialized periodically to ensure that it remains a signed distance function (SDF). To avoid this defect, an improved regularized level set method-based image segmentation approach is presented. First, a new potential function is defined and introduced to reconstruct a new distance regularization term to solve this issue of periodically initializing the level set function. Second, by combining the distance regularization term with the internal and external energy terms, a new energy functional is developed. Then, the process of the new energy functional evolution is derived by using the calculus of variations and the steepest descent approach, and a partial differential equation is designed. Finally, an improved regularized level set-based image segmentation (IRLS-IS) method is proposed. Numerical experimental results demonstrate that the IRLS-IS method is not only effective and robust to segment noise and intensity-inhomogeneous images but can also analyze complex medical images well.
Collapse
|
4
|
Efficient Superpixel-Guided Interactive Image Segmentation Based on Graph Theory. Symmetry (Basel) 2018. [DOI: 10.3390/sym10050169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|