1
|
Savoy A, Anderson KL, Gogola JV. The songbird connectome (OSCINE-NET.ORG): structure-function organization beyond the canonical vocal control network. BMC Neurosci 2024; 25:79. [PMID: 39731002 DOI: 10.1186/s12868-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior. Thus, a more comprehensive understanding of brain-wide connectivity is essential to further assess the totality of circuitry underlying this complex learned behavior. RESULTS We present the Oscine Structural Connectome for Investigating NEural NETwork ORGanization (OSCINE-NET.ORG), the first interactive mesoscale connectome for any vocal learner. This comprehensive digital map includes all known connectivity data, covering major brain superstructures and functional networks. Our analysis reveals that the songbird brain exhibits small-world properties, with highly connected communities functionally designated as motor, visual, associative, vocal, social, and auditory. Moreover, there is a small set of significant connections across these communities, including from social and auditory sub-communities to vocal sub-communities, which highlight ethologically relevant facets of vocal learning and production. Notably, the vocal community contains the majority of the canonical vocal control network, as well as a variety of other nodes that are highly interconnected with it, meriting further evaluation for their inclusion in this network. A subset of nodes forms a "rich broker club," highly connected across the brain and forming a small circuit amongst themselves, indicating they may play a key role in information transfer broadly. Collectively, their bidirectional connectivity with multiple communities indicates they may act as liaisons across multiple functional circuits for a variety of complex behaviors. CONCLUSIONS OSCINE-NET.ORG offers unprecedented access to detailed songbird connectivity data, promoting insight into the neural circuits underlying complex behaviors. This data emphasizes the importance of brain-wide integration in vocal learning, facilitating a potential reevaluation of the canonical vocal control network. Furthermore, we computationally identify a small, previously unidentified circuit-one which may play an impactful role in brain-wide coordination of multiple complex behaviors.
Collapse
Affiliation(s)
- Andrew Savoy
- Department of Psychology, Integrative Neuroscience Program, University of Chicago, 5848 S University Ave, Chicago, IL, 60637, USA.
| | - Katherine L Anderson
- Department of Molecular, Cellular, and Developmental Biology, The City University of New York Graduate Center, 365 5th Ave, New York, NY, 10016, USA.
- Department of Biology, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| | - Joseph V Gogola
- Department of Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Camacho-Alpízar A, Hewitt J, Poole C, Eckersley T, Whittaker BA, Self JL, Guillette LM. The repeatability of behavioural laterality during nest building in zebra finches. Anim Cogn 2024; 27:76. [PMID: 39531083 PMCID: PMC11557688 DOI: 10.1007/s10071-024-01916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Cerebral laterality is a widespread phenomenon across animals and refers to the specialization of the left and right hemispheres of the brain for perceptual, cognitive and behavioural tasks. Behavioural laterality occurs in several contexts, including foraging, mate selection, predator detection and tool manufacture. Behavioural laterality during nest building, however, has rarely been addressed. We conducted two experiments to examine (1) whether behavioural laterality occurs during nest building, (2) whether laterality correlates with nest-building speed, (3) whether laterality during nest building is repeatable, and (4) whether nest-building experience influences laterality. In Experiment 1, we scored individual laterality indices for 58 zebra finch (Taeniopygia guttata) males, the nest-building sex in this species, based on which eye he used to view then select the first 25 pieces of nest material. We calculated correlations between laterality strength and nest-building duration. In Experiment 2, to test the repeatability of laterality during nest building, we measured laterality for 20 males across five nests built by each male. Individuals varied both in the direction and the strength of behavioural laterality of material selection during nest building. Overall, however, males were not consistent in their laterality across the five nests. We found no correlation between laterality strength and nest-building duration in either experiment. Finally, we found evidence for building experience influencing the behavioural laterality of individuals: more building experience results in more predictable behavioural laterality during nest-material selection.
Collapse
Affiliation(s)
| | - Jessica Hewitt
- Department of Psychology, University of Alberta, T6G 2R3, Edmonton, AB, Canada
| | - Cailyn Poole
- Department of Psychology, University of Alberta, T6G 2R3, Edmonton, AB, Canada
| | - Tristan Eckersley
- Department of Psychology, University of Alberta, T6G 2R3, Edmonton, AB, Canada
| | | | - Julia L Self
- Department of Psychology, University of Alberta, T6G 2R3, Edmonton, AB, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, T6G 2R3, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Frank SY, Hunt JL, Bae AJ, Chirathivat N, Lotfi S, Raja SC, Gobes SMH. Hemispheric dominance in HVC is experience-dependent in juvenile male zebra finches. Sci Rep 2024; 14:5781. [PMID: 38461197 PMCID: PMC10924951 DOI: 10.1038/s41598-024-55987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
Juvenile male zebra finches (Taeniopygia guttata) must be exposed to an adult tutor during a sensitive period to develop normal adult song. The pre-motor nucleus HVC (acronym used as a proper name), plays a critical role in song learning and production (cf. Broca's area in humans). In the human brain, left-side hemispheric dominance in some language regions is positively correlated with proficiency in linguistic skills. However, it is unclear whether this pattern depends upon language learning, develops with normal maturation of the brain, or is the result of pre-existing functional asymmetries. In juvenile zebra finches, even though both left and right HVC contribute to song production, baseline molecular activity in HVC is left-dominant. To test if HVC exhibits hemispheric dominance prior to song learning, we raised juvenile males in isolation from adult song and measured neuronal activity in the left and right HVC upon first exposure to an auditory stimulus. Activity in the HVC was measured using the immediate early gene (IEG) zenk (acronym for zif-268, egr-1, NGFI-a, and krox-24) as a marker for neuronal activity. We found that neuronal activity in the HVC of juvenile male zebra finches is not lateralized when raised in the absence of adult song, while normally-reared juvenile birds are left-dominant. These findings show that there is no pre-existing asymmetry in the HVC prior to song exposure, suggesting that lateralization of the song system depends on learning through early exposure to adult song and subsequent song-imitation practice.
Collapse
Affiliation(s)
- Sophia Y Frank
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Jesse L Hunt
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Andrea J Bae
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Napim Chirathivat
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sima Lotfi
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sahitya C Raja
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
4
|
Suriyampola PS, Huang AJ, Lopez M, Conroy-Ben O, Martins EP. Exposure to environmentally relevant concentrations of Bisphenol-A linked to loss of visual lateralization in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106862. [PMID: 38359500 DOI: 10.1016/j.aquatox.2024.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Weak, but environmentally relevant concentrations of contaminants can have subtle, yet important, impacts on organisms, which are often overlooked due to the lack of acute impacts and the timing of exposure. Thus, recognizing simple, non-invasive markers of contamination events is essential for early detection and addressing the effects of exposure to weak environmental contaminants. Here, we tested whether exposure to an environmentally relevant concentration of Bisphenol-A (BPA), a common and persistent contaminant in aquatic systems, affects the lateralization of adult zebrafish (Danio rerio), a widely used model organism in ecotoxicology. We found that 73.5% of adult zebrafish displayed a left-side bias when they approached a visual cue, but that those exposed to weak BPA (0.02 mg/L) for 7 days did not exhibit laterality. Only 47.1% displayed a left-side bias. We found no differences in activity level and visual sensitivity, motor and sensory mechanisms, that regulate lateralized responses and that were unaffected by weak BPA exposure. These findings indicate the reliability of laterality as a simple measure of contaminant exposure and for future studies of the detailed mechanisms underlying subtle and complex behavioral effects to pollutants.
Collapse
Affiliation(s)
| | | | - Melissa Lopez
- School of Life Sciences, Arizona State University, AZ, USA
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, AZ, USA
| | | |
Collapse
|
5
|
Yeganegi H, Ondracek JM. Multi-channel recordings reveal age-related differences in the sleep of juvenile and adult zebra finches. Sci Rep 2023; 13:8607. [PMID: 37244927 DOI: 10.1038/s41598-023-35160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023] Open
Abstract
Despite their phylogenetic differences and distinct pallial structures, mammals and birds show similar electroencephalography (EEG) traces during sleep, consisting of distinct rapid eye movement (REM) sleep and slow wave sleep (SWS) stages. Studies in human and a limited number of other mammalian species show that this organization of sleep into interleaving stages undergoes radical changes during lifetime. Do these age-dependent variations in sleep patterns also occur in the avian brain? Does vocal learning have an effect on sleep patterns in birds? To answer these questions, we recorded multi-channel sleep EEG from juvenile and adult zebra finches for several nights. Whereas adults spent more time in SWS and REM sleep, juveniles spent more time in intermediate sleep (IS). The amount of IS was significantly larger in male juveniles engaged in vocal learning compared to female juveniles, which suggests that IS could be important for vocal learning. In addition, we observed that functional connectivity increased rapidly during maturation of young juveniles, and was stable or declined at older ages. Synchronous activity during sleep was larger for recording sites in the left hemisphere for both juveniles and adults, and generally intra-hemispheric synchrony was larger than inter-hemispheric synchrony during sleep. A graph theory analysis revealed that in adults, highly correlated EEG activity tended to be distributed across fewer networks that were spread across a wider area of the brain, whereas in juveniles, highly correlated EEG activity was distributed across more numerous, albeit smaller, networks in the brain. Overall, our results reveal that significant changes occur in the neural signatures of sleep during maturation in an avian brain.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
6
|
Soma M. Behavioral and Evolutionary Perspectives on Visual Lateralization in Mating Birds: A Short Systematic Review. Front Physiol 2022; 12:801385. [PMID: 35173624 PMCID: PMC8841733 DOI: 10.3389/fphys.2021.801385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
The division of cognitive processing between the two hemispheres of the brain causes lateralized eye use in various behavioral contexts. Generally, visual lateralization is shared among vertebrates to a greater extent, with little interspecific variation. However, previous studies on the visual lateralization in mating birds have shown surprising heterogeneity. Therefore, this systematic review paper summarized and analyzed them using phylogenetic comparative methods. The review aimed to elucidate why some species used their left eye and others their right to fixate on individuals of the opposite sex, such as mating partners or prospective mates. It was found that passerine and non-passerine species showed opposite eye use for mating, which could have stemmed from the difference in altricial vs. precocial development. However, due to the limited availability of species data, it was impossible to determine whether the passerine group or altricial development was the primary factor. Additionally, unclear visual lateralization was found when studies looked at lek mating species and males who performed courtship. These findings are discussed from both evolutionary and behavioral perspectives. Possible directions for future research have been suggested.
Collapse
|
7
|
Abstract
We know a good deal about brain lateralization in birds and a good deal about animal welfare, but relatively little about whether there is a noteworthy relationship between avian welfare and brain lateralization. In birds, the left hemisphere is specialised to categorise stimuli and to discriminate preferred categories from distracting stimuli (e.g., food from an array of inedible objects), whereas the right hemisphere responds to small differences between stimuli, controls social behaviour, detects predators and controls attack, fear and escape responses. In this paper, we concentrate on visual lateralization and the effect of light exposure of the avian embryo on the development of lateralization, and we consider its role in the welfare of birds after hatching. Findings suggest that light-exposure during incubation has a general positive effect on post-hatching behaviour, likely because it facilitates control of behaviour by the left hemisphere, which can suppress fear and other distress behaviour controlled by the right hemisphere. In this context, particular attention needs to be paid to the influence of corticosterone, a stress hormone, on lateralization. Welfare of animals in captivity, as is well known, has two cornerstones: enrichment and reduction of stress. What is less well-known is the link between the influence of experience on brain lateralization and its consequent positive or negative outcomes on behaviour. We conclude that the welfare of birds may be diminished by failure to expose the developing embryos to light but we also recognise that more research on the association between lateralization and welfare is needed.
Collapse
|
8
|
Golüke S, Bischof HJ, Engelmann J, Caspers BA, Mayer U. Social odour activates the hippocampal formation in zebra finches (Taeniopygia guttata). Behav Brain Res 2019; 364:41-49. [DOI: 10.1016/j.bbr.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
|
9
|
Chiral Neuronal Motility: The Missing Link between Molecular Chirality and Brain Asymmetry. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Left–right brain asymmetry is a fundamental property observed across phyla from invertebrates to humans, but the mechanisms underlying its formation are still largely unknown. Rapid progress in our knowledge of the formation of body asymmetry suggests that brain asymmetry might be controlled by the same mechanisms. However, most of the functional brain laterality, including language processing and handedness, does not share common mechanisms with visceral asymmetry. Accumulating evidence indicates that asymmetry is manifested as chirality at the single cellular level. In neurons, the growth cone filopodia at the tips of neurites exhibit a myosin V-dependent, left-helical, and right-screw rotation, which drives the clockwise circular growth of neurites on adhesive substrates. Here, I propose an alternative model for the formation of brain asymmetry that is based on chiral neuronal motility. According to this chiral neuron model, the molecular chirality of actin filaments and myosin motors is converted into chiral neuronal motility, which is in turn transformed into the left–right asymmetry of neural circuits and lateralized brain functions. I also introduce automated, numerical, and quantitative methods to analyze the chirality and the left–right asymmetry that would enable the efficient testing of the model and to accelerate future investigations in this field.
Collapse
|