1
|
Murugappan S, Kuthe PV, Chandra Sekhar KVG, Sankaranarayanan M. Recent developments in thiochromene chemistry. Org Biomol Chem 2024. [PMID: 39026505 DOI: 10.1039/d4ob00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Thiochromenes are versatile sulfur-containing heterocyclic compounds that have received considerable interest in drug discovery because of their ability to act as crucial building blocks for synthesizing bioactive compounds. In particular, these scaffolds have found utility in the design of anticancer, anti-HIV, antioxidant, and antimicrobial agents, among others. Despite their pharmacological potential, the synthesis of these scaffolds is less explored in contrast to their oxygen-containing counterparts. This review classifies the synthetic processes into Michael addition, cycloaddition, ring-opening, coupling, cyclization and Diels-Alder reactions, and others. Reaction mechanisms, circumstances, and important instances are thoroughly discussed in each area. For instance, chiral catalysts and substrates like mercaptobenzaldehyde and cinnamaldehyde are used in Michael addition processes to achieve excellent enantioselectivity. In cycloaddition reactions, readily available substrates such as thioisatins and alkynes achieve regioselectivity and product production. Thiochromenes are also synthesized by ring-opening reactions with epoxides or aziridines. These reactions demonstrate the importance of catalysts and solvents in reaction control, particularly palladium catalysts for aryl halides and thiol coupling processes. Another major class discussed is cyclization reactions with alkynyl thiols and alkynes under regulated temperature and pressure conditions to efficiently synthesize thiochromenes. With the use of chiral substrates and catalysts, Diels-Alder processes increase yields and selectivity and enhance the variety of thiochromene compounds. This review emphasizes the versatility of thiochromenes in drug discovery and consolidates the existing literature on thiochromenes, scrutinizing the gaps and opportunities for synthesizing novel thiochromene-containing lead molecules.
Collapse
Affiliation(s)
- Solai Murugappan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India.
| | - Pranali Vijaykumar Kuthe
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India.
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India.
| |
Collapse
|
2
|
Islam MS, Al-Majid AM, Haukka M, Parveen Z, Ravaiz N, Wadood A, Rehman AU, Ríos-Gutiérrez M, Domingo LR, Barakat A. A novel alpha-amylase inhibitor-based spirooxindole-pyrrolidine-clubbed thiochromene-pyrzaole pharmacophores: Unveiling the [3+2] cycloaddition reaction by molecular electron density theory. Chem Biol Drug Des 2023; 102:972-995. [PMID: 37563748 DOI: 10.1111/cbdd.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
A novel spirooxindole-pyrrolidine clubbed thiochromene and pyrazole motifs were synthesized by [3+2] cycloaddition (32CA) reactions in one step process starting from the ethylene-based thiochromene and pyrazole scaffolds with the secondary amino-acids and substituted isatins in high yield. The 32CA reaction of AY 10 with ethylene derivative 6 has also been studied with Molecular Electron Density Theory. The high nucleophilic character of AY 10, N = 4.39 eV, allows explaining that the most favorable TS-on is 13.9 kcal mol-1 below the separated reagent. This 32CA, which takes place through a non-concerted one-step mechanism, presents a total ortho regio- and endo stereoselectivity, which is controlled by the formation of two intramolecular H… O hydrogen bonds. The design of spirooxindole-pyrrolidines engrafted thiochromene and pyrazole was tested for alpha-amylase inhibition and show a high efficacy in nanoscale range of reactivity. The key interaction between the most active hybrids and the receptor was studied by molecular docking. The physiochemical properties of the designed spirooxindole-pyrrolidines were carried out by in silico ADMET prediction. The newly synthesized most potent hybrid could be considered as a lead compound for drug discovery development for type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
| | | | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nabeela Ravaiz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Luis R Domingo
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhao H, Zhao Y. Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions-Easy Access to Structural Diversity. Molecules 2023; 28:6488. [PMID: 37764264 PMCID: PMC10536439 DOI: 10.3390/molecules28186488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
4
|
Tabti K, Abdessadak O, Sbai A, Maghat H, Bouachrine M, Lakhlifi T. Design and development of novel spiro-oxindoles as potent antiproliferative agents using quantitative structure activity based Monte Carlo method, docking molecular, molecular dynamics, free energy calculations, and pharmacokinetics /toxicity studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Altowyan MS, Soliman SM, Haukka M, Al-Shaalan NH, Alkharboush AA, Barakat A. Synthesis, Characterization, and Cytotoxicity of New Spirooxindoles Engrafted Furan Structural Motif as a Potential Anticancer Agent. ACS OMEGA 2022; 7:35743-35754. [PMID: 36249408 PMCID: PMC9558703 DOI: 10.1021/acsomega.2c03790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
A new series of spirooxindoles based on ethylene derivatives having furan aryl moiety are reported. The new hybrids were achieved via [3 + 2] cycloaddition reaction as an economic one-step efficient approach. The final constructed spirooxindoles have four contiguous asymmetric carbon centers. The structure of 3a is exclusively confirmed using X-ray single crystal diffraction. The supramolecular structure of 3a is controlled by O···H, H···H, and C···C intermolecular contacts. It includes layered molecules interconnected weak C-H···O (2.675 Å), H···H (2.269 Å), and relatively short Cl···Br interhalogen interactions [3.4500(11)Å]. Using Hirshfeld analysis, the percentages of these intermolecular contacts are 10.6, 25.7, 6.4, and 6.2%, respectively. The spirooxindoles along with ethylene derivatives having furan aryl moiety were assessed against breast (MCF7) and liver (HepG2) cancer cell lines. The results indicated that the new chalcone 3b showed excellent activity in both cell lines (MCF7 and HepG2) with IC50 = 4.1 ± 0.10 μM/mL (MCF7) and 3.5 ± 0.07 μM/mL (HepG2) compared to staurosporine with 4.3 and 2.92 folds. Spirooxindoles 6d (IC50 = 4.3 ± 0.18 μM/mL), 6f (IC50 = 10.3 ± 0.40 μM/mL), 6i (IC50 = 10.7 ± 0.38 μM/mL), and 6j (IC50 = 4.7 ± 0.18 μM/mL) exhibited potential activity against breast adenocarcinoma, while compounds 6d (IC50 = 6.9 ± 0.23 μM/mL) and 6f (IC50 = 3.5 ± 0.11 μM/mL) were the most active hybrids against human liver cancer cell line (HepG2) compared to staurosporine [IC50 = 17.8 ± 0.50 μM/mL (MCF7) and 10.3 ± 0.23 μM/mL (HepG2)]. Molecular docking study exhibited the virtual mechanism of binding of compound 3b as a dual inhibitor of EGFR/CDK-2 proteins, and this may highlight the molecular targets for its cytotoxic activity.
Collapse
Affiliation(s)
- Mezna Saleh Altowyan
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saied M. Soliman
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 Finland
| | - Nora Hamad Al-Shaalan
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aminah A. Alkharboush
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
[3 + 2] Cycloadditions in Asymmetric Synthesis of Spirooxindole Hybrids Linked to Triazole and Ferrocene Units: X-ray Crystal Structure and MEDT Study of the Reaction Mechanism. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Derivatization of spirooxindole having triazole and ferrocene units was achieved by the [3 + 2] cycloaddition (32CA) reaction approach. Reacting the respective azomethine ylide (AY) intermediate generated in situ with the ethylene derivative produced novel asymmetric cycloadducts with four contiguous asymmetric carbons in an overall high chemical yield with excellent regioselectivity and diastereoselectivity. X-Ray single-crystal structure analyses revealed, with no doubt, the success of the synthesis of the target compounds. The 32CA reaction of AY 5b with ferrocene ethylene 1 has been studied within MEDT. This 32CA reaction proceeds via a two-stage one-step mechanism involving a high asynchronous transition state structure, resulting from the nucleophilic attack of AY 5b on the β-conjugated position of ferrocene ethylene 1. The supernucleophilic character of AY 5b and the strong electrophilic character of ferrocene ethylene 1 account for the high polar character of this 32CA reaction. Further, Hirshfeld analyses were used to describe the molecular packing of compounds 4b, 4e, 4h and 4i.
Collapse
|
7
|
A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of an Azomethine Ylide with an Electrophilic Ethylene Linked to Triazole and Ferrocene Units. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196532. [PMID: 36235069 PMCID: PMC9571756 DOI: 10.3390/molecules27196532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
The [3+2] cycloaddition (32CA) reaction of an azomethine ylide (AY) with an electrophilic ethylene linked to triazole and ferrocene units has been studied within the Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) level. The topology of the electron localization function (ELF) of this AY allows classifying it as a pseudo(mono)radical species characterized by the presence of two monosynaptic basins, integrating a total of 0.76 e, at the C1 carbon. While the ferrocene ethylene has a strong electrophilic character, the AY is a supernucleophile, suggesting that the corresponding 32CA reaction has a high polar character and a low activation energy. The most favorable ortho/endo reaction path presents an activation enthalpy of 8.7 kcal·mol-1, with the 32CA reaction being exergonic by -42.1 kcal·mol-1. This reaction presents a total endo stereoselectivity and a total ortho regioselectivity. Analysis of the global electron density transfer (GEDT) at the most favorable TS-on (0.23 e) accounts for the high polar character of this 32CA reaction, classified as forward electron density flux (FEDF). The formation of two intermolecular hydrogen bonds between the two interacting frameworks at the most favorable TS-on accounts for the unexpected ortho regioselectivity experimentally observed.
Collapse
|
8
|
A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of Pseudo(mono)radical Azomethine Ylides with Phenyl Vinyl Sulphone. ORGANICS 2022. [DOI: 10.3390/org3020010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The [3+2] cycloaddition (32CA) reaction of an azomethine ylide (AY), derived from isatin and L-proline, with phenyl vinyl sulphone has been studied within Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) level. ELF topological analysis of AY classifies it as a pseudo(mono)radical species with two monosynaptic basins at the C1 carbon, integrating a total of 0.76 e. While vinyl sulphone has a strong electrophilic character, AY is a supernucleophile, suggesting a high polar character and low activation energy for the reaction. The nucleophilic Parr functions indicate that the pseudoradical C1 carbon is the most nucleophilic center. The 32CA reaction presents an activation Gibbs free energy of 13.1 kcal·mol−1 and is exergonic by −26.8 kcal·mol−1. This reaction presents high endo stereoselectivity and high meta regioselectivity. Analysis of the global electron density transfer (GEDT) at the most favorable meta/endo TS, 0.31 e, accounts for the high polar character of this 32CA reaction, classified by forward electron density flux (FEDF). A Bonding Evolution Theory (BET) study along the most favorable meta/endo reaction path characterizes this 32CA reaction, taking place through a non-concerted two-stage one-step mechanism, as a pseudo(mono)radical-type 32CA reaction, in agreement with the ELF analysis of the AY.
Collapse
|
9
|
Novel Spiro-pyrrolizidine-Oxindole and Spiropyrrolidine-Oxindoles: Green synthesis Under Classical, Ultrasonic, and Microwave Conditions and Molecular Docking Simulation for antitumor and type 2 diabetes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
10
|
Barakat A, Haukka M, Soliman SM, Al-Majid AM, Ali M, Islam MS, Karami AM, Ul-Haq Z, Domingo LR. Synthesis and anti-Cancer Activity of a New Hybrid Based Spirooxindole-Pyrrolidine -Thiochromene Scaffolds via [3 + 2] Cycloaddition Reaction: Computational Investigation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2042334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - M. Ali
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Burjassot, Spain Dr. Moliner 50, Valencia
| |
Collapse
|
11
|
Elkanzi NAA, El Azab IH, Bakr RB. Design, Synthesis, and In Silico Molecular Docking Study of Some Novel Thiochromene Derivatives with Antimicrobial Potential. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2041052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - Islam H. El Azab
- Food Science & Nutrition Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Al-Majid AM, Alammari AS, Alshahrani S, Haukka M, Islam MS, Barakat A. Cu(ii)-thiophene-2,5-bis(amino-alcohol) mediated asymmetric Aldol reaction and Domino Knoevenagel Michael cyclization: a new highly efficient Lewis acid catalyst. RSC Adv 2022; 12:6149-6165. [PMID: 35424540 PMCID: PMC8982094 DOI: 10.1039/d2ra00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
The highly efficient Lewis acid-catalytic system Cu(ii)-thiophene-2,5-bis(amino-alcohol) has been developed for enantioselective Aldol reaction of isatin derivatives with ketones. The new catalytic system also proved to be highly enantioselective for the one pot three-component Domino Knoevenagel Michael cyclization reaction of substituted isatin with malononitrile and ethylacetoacetate. The chiral ligand (2S,2'S)-2,2'-((thiophene-2,5-diylbis(methylene))bis(azanediyl))bis(3-phenylpropan-1-ol) (L1) in combination with Cu(OAc)2·H2O employed as a new Lewis acid catalyst, furnished 3-substituted-3-hydroxyindolin-2-ones derivatives (3a-s) in good to excellent yields (81-99%) with high enantioselectivities (up to 96% ee) and spiro[4H-pyran-3,3-oxindole] derivatives (6a-l) in excellent yields (89-99%) with high ee (up to 95%). These aldol products and spiro-oxindoles constitute a core structural motif in a large number of pharmaceutically active molecules and natural products.
Collapse
Affiliation(s)
- Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia +966-61-1467-5992
| | - Abdullah Saleh Alammari
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia +966-61-1467-5992
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia +966-61-1467-5992
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä P. O. Box 35 FI-40014 Jyväskylä Finland
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia +966-61-1467-5992
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia +966-61-1467-5992
| |
Collapse
|
13
|
Islam MS, Haukka M, Soliman SM, Al-Majid AM, Rahman AM, Bari A, Barakat A. Regio- and stereoselective synthesis of spiro-heterocycles bearing the pyrazole scaffold via [3+2] cycloaddition reaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Synthesis of 2H-thiochromene derivatives (microreview). Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Barakat A, Haukka M, Soliman SM, Ali M, Al-Majid AM, El-Faham A, Domingo LR. Straightforward Regio- and Diastereoselective Synthesis, Molecular Structure, Intermolecular Interactions and Mechanistic Study of Spirooxindole-Engrafted Rhodanine Analogs. Molecules 2021; 26:7276. [PMID: 34885853 PMCID: PMC8658983 DOI: 10.3390/molecules26237276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
Straightforward regio- and diastereoselective synthesis of bi-spirooxindole-engrafted rhodanine analogs 5a-d were achieved by one-pot multicomponent [3 + 2] cycloaddition (32CA) reaction of stabilized azomethine ylide (AYs 3a-d) generated in situ by condensation of L-thioproline and 6-chloro-isatin with (E)-2-(5-(4-chlorobenzylidene)-2,4-dioxothiazolidin-3-yl)-N-(2-morpholinoethyl)acetamide. The bi-spirooxindole-engrafted rhodanine analogs were constructed with excellent diastereo- and regioselectivity along with high chemical yield. X-ray crystallographic investigations for hybrid 5a revealed the presence of four contiguous stereocenters related to C11, C12, C19 and C22 of the spiro structure. Hirshfeld calculations indicated the presence of many short intermolecular contacts such as Cl...C, S...S, S...H, O...H, N...H, H...C, C...C and H...H interactions. These contacts played a very important role in the crystal stability. The polar nature of the 32CA reaction was studied by analysis of the conceptual DFT reactivity indices. Theoretical study of this 32CA reaction indicated that it takes place through a non-concerted two-stage one-step mechanism associated with the nucleophilic attack of AY 3a to the electrophilic ethylene derivative.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (A.M.A.-M.)
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland;
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (S.M.S.); (A.E.-F.)
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (A.M.A.-M.)
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (A.M.A.-M.)
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (S.M.S.); (A.E.-F.)
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, 46100 Burjassot, Spain;
| |
Collapse
|
16
|
Al-Majid AM, Ali M, Islam MS, Alshahrani S, Alamary AS, Yousuf S, Choudhary MI, Barakat A. Stereoselective Synthesis of the Di-Spirooxindole Analogs Based Oxindole and Cyclohexanone Moieties as Potential Anticancer Agents. Molecules 2021; 26:6305. [PMID: 34684885 PMCID: PMC8541513 DOI: 10.3390/molecules26206305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
A new series of di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were synthesized. Initially, azomethine ylides were generated via reaction of the substituted isatins 3a-f (isatin, 3a, 6-chloroisatin, 3b, 5-fluoroisatin, 3c, 5-nitroisatin, 3d, 5-methoxyisatin, 3e, and 5-methylisatin, 3f, and (2S)-octahydro-1H-indole-2-carboxylic acid 2, in situ azomethine ylides reacted with the cyclohexanone based-chalcone 1a-f to afford the target di-spirooxindole compounds 4a-n. This one-pot method provided diverse structurally complex molecules, with biologically relevant spirocycles in a good yields. All synthesized di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were evaluated for their anticancer activity against four cancer cell lines, including prostate PC3, cervical HeLa, and breast (MCF-7, and MDA-MB231) cancer cell lines. The cytotoxicity of these di-spirooxindole analogs was also examined against human fibroblast BJ cell lines, and they appeared to be non-cytotoxic. Compound 4b was identified as the most active member of this series against prostate cancer cell line PC3 (IC50 = 3.7 ± 1.0 µM). The cyclohexanone engrafted di-spirooxindole analogs 4a and 4l (IC50 = 7.1 ± 0.2, and 7.2 ± 0.5 µM, respectively) were active against HeLa cancer cells, whereas NO2 substituted isatin ring and meta-fluoro-substituted (2E,6E)-2,6-dibenzylidenecyclohexanone containing 4i (IC50 = 7.63 ± 0.08 µM) appeared to be a promising agent against the triple negative breast cancer MDA-MB231 cell line. To explore the plausible mechanism of anticancer activity of di-spirooxindole analogs, molecular docking studies were investigated which suggested that spirooxindole analogs potentially inhibit the activity of MDM2.
Collapse
Affiliation(s)
- Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Sammer Yousuf
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (S.Y.); (M.I.C.)
| | - M. Iqbal Choudhary
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (S.Y.); (M.I.C.)
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|