1
|
Walker M, Moore H, Ataya A, Pham A, Corris PA, Laubenbacher R, Bryant AJ. A perfectly imperfect engine: Utilizing the digital twin paradigm in pulmonary hypertension. Pulm Circ 2024; 14:e12392. [PMID: 38933181 PMCID: PMC11199193 DOI: 10.1002/pul2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Pulmonary hypertension (PH) is a severe medical condition with a number of treatment options, the majority of which are introduced without consideration of the underlying mechanisms driving it within an individual and thus a lack of tailored approach to treatment. The one exception is a patient presenting with apparent pulmonary arterial hypertension and shown to have vaso-responsive disease, whose clinical course and prognosis is significantly improved by high dose calcium channel blockers. PH is however characterized by a relative abundance of available data from patient cohorts, ranging from molecular data characterizing gene and protein expression in different tissues to physiological data at the organ level and clinical information. Integrating available data with mechanistic information at the different scales into computational models suggests an approach to a more personalized treatment of the disease using model-based optimization of interventions for individual patients. That is, constructing digital twins of the disease, customized to a patient, promises to be a key technology for personalized medicine, with the aim of optimizing use of existing treatments and developing novel interventions, such as new drugs. This article presents a perspective on this approach in the context of a review of existing computational models for different aspects of the disease, and it lays out a roadmap for a path to realizing it.
Collapse
Affiliation(s)
- Melody Walker
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Helen Moore
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Ali Ataya
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Ann Pham
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Paul A. Corris
- The Faculty of Medical Sciences Newcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
2
|
Cogno N, Bauer R, Durante M. Mechanistic model of radiotherapy-induced lung fibrosis using coupled 3D agent-based and Monte Carlo simulations. COMMUNICATIONS MEDICINE 2024; 4:16. [PMID: 38336802 PMCID: PMC10858213 DOI: 10.1038/s43856-024-00442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Mechanistic modelling of normal tissue toxicities is unfolding as an alternative to the phenomenological normal tissue complication probability models. The latter, currently used in the clinics, rely exclusively on limited patient data and neglect spatial dose distribution information. Among the various approaches, agent-based models are appealing as they provide the means to include patient-specific parameters and simulate long-term effects in complex systems. However, Monte Carlo tools remain the state-of-the-art for modelling radiation transport and provide measurements of the delivered dose with unmatched precision. METHODS In this work, we develop and characterize a coupled 3D agent-based - Monte Carlo model that mechanistically simulates the onset of the radiation-induced lung fibrosis in an alveolar segment. To the best of our knowledge, this is the first such model. RESULTS Our model replicates extracellular matrix patterns, radiation-induced lung fibrosis severity indexes and functional subunits survivals that show qualitative agreement with experimental studies and are consistent with our past results. Moreover, in accordance with experimental results, higher functional subunits survival and lower radiation-induced lung fibrosis severity indexes are achieved when a 5-fractions treatment is simulated. Finally, the model shows increased sensitivity to more uniform protons dose distributions with respect to more heterogeneous ones from photon irradiation. CONCLUSIONS This study lays thus the groundwork for further investigating the effects of different radiotherapeutic treatments on the onset of radiation-induced lung fibrosis via mechanistic modelling.
Collapse
Affiliation(s)
- Nicolò Cogno
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany.
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany.
- Department of Physics "Ettore Pancini", University Federico II, Naples, Italy.
| |
Collapse
|
3
|
Islam MA, Getz M, Macklin P, Ford Versypt AN. An agent-based modeling approach for lung fibrosis in response to COVID-19. PLoS Comput Biol 2023; 19:e1011741. [PMID: 38127835 PMCID: PMC10769079 DOI: 10.1371/journal.pcbi.1011741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
4
|
Islam MA, Getz M, Macklin P, Versypt ANF. An agent-based modeling approach for lung fibrosis in response to COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.10.03.510677. [PMID: 36238719 PMCID: PMC9558432 DOI: 10.1101/2022.10.03.510677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis. Author summary COVID-19 survivors are at risk of lung fibrosis as a long-term effect. Lung fibrosis is the excess deposition of tissue materials in the lung that hinder gas exchange and can collapse the whole organ. We identified TGF-β as a critical regulator of fibrosis. We built a model to investigate the mechanisms of TGF-β sources in the process of fibrosis. Our results showed spatial behavior of sources (stationary or mobile) and their activity (activation rate of TGF-β, longer activation of sources) could lead to lung fibrosis. Current clinical trials for fibrosis that target TGF-β need to consider TGF-β sources' spatial properties and activity to develop better treatment strategies.
Collapse
|
5
|
Cogno N, Bauer R, Durante M. An Agent-Based Model of Radiation-Induced Lung Fibrosis. Int J Mol Sci 2022; 23:13920. [PMID: 36430398 PMCID: PMC9693125 DOI: 10.3390/ijms232213920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Early- and late-phase radiation-induced lung injuries, namely pneumonitis and lung fibrosis (RILF), severely constrain the maximum dose and irradiated volume in thoracic radiotherapy. As the most radiosensitive targets, epithelial cells respond to radiation either by undergoing apoptosis or switching to a senescent phenotype that triggers the immune system and damages surrounding healthy cells. Unresolved inflammation stimulates mesenchymal cells' proliferation and extracellular matrix (ECM) secretion, which irreversibly stiffens the alveolar walls and leads to respiratory failure. Although a thorough understanding is lacking, RILF and idiopathic pulmonary fibrosis share multiple pathways and would mutually benefit from further insights into disease progression. Furthermore, current normal tissue complication probability (NTCP) models rely on clinical experience to set tolerance doses for organs at risk and leave aside mechanistic interpretations of the undergoing processes. To these aims, we implemented a 3D agent-based model (ABM) of an alveolar duct that simulates cell dynamics and substance diffusion following radiation injury. Emphasis was placed on cell repopulation, senescent clearance, and intra/inter-alveolar bystander senescence while tracking ECM deposition. Our ABM successfully replicates early and late fibrotic response patterns reported in the literature along with the ECM sigmoidal dose-response curve. Moreover, surrogate measures of RILF severity via a custom indicator show qualitative agreement with published fibrosis indices. Finally, our ABM provides a fully mechanistic alveolar survival curve highlighting the need to include bystander damage in lung NTCP models.
Collapse
Affiliation(s)
- Nicolò Cogno
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
6
|
Demetriades M, Zivanovic M, Hadjicharalambous M, Ioannou E, Ljujic B, Vucicevic K, Ivosevic Z, Dagovic A, Milivojevic N, Kokkinos O, Bauer R, Vavourakis V. Interrogating and Quantifying In Vitro Cancer Drug Pharmacodynamics via Agent-Based and Bayesian Monte Carlo Modelling. Pharmaceutics 2022; 14:749. [PMID: 35456583 PMCID: PMC9029523 DOI: 10.3390/pharmaceutics14040749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The effectiveness of chemotherapy in cancer cell regression is often limited by drug resistance, toxicity, and neoplasia heterogeneity. However, due to the significant complexities entailed by the many cancer growth processes, predicting the impact of interference and symmetry-breaking mechanisms is a difficult problem. To quantify and understand more about cancer drug pharmacodynamics, we combine in vitro with in silico cancer models. The anti-proliferative action of selected cytostatics is interrogated on human colorectal and breast adenocarcinoma cells, while an agent-based computational model is employed to reproduce experiments and shed light on the main therapeutic mechanisms of each chemotherapeutic agent. Multiple drug administration scenarios on each cancer cell line are simulated by varying the drug concentration, while a Bayesian-based method for model parameter optimisation is employed. Our proposed procedure of combining in vitro cancer drug screening with an in silico agent-based model successfully reproduces the impact of chemotherapeutic drugs in cancer growth behaviour, while the mechanisms of action of each drug are characterised through model-derived probabilities of cell apoptosis and division. We suggest that our approach could form the basis for the prospective generation of experimentally-derived and model-optimised pharmacological variables towards personalised cancer therapy.
Collapse
Affiliation(s)
- Marios Demetriades
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Myrianthi Hadjicharalambous
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Eleftherios Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Biljana Ljujic
- Faculty of Medical Sciences, Human Genetics, University of Kragujevac, 34000 Kragujevac, Serbia; (B.L.); (Z.I.)
| | - Ksenija Vucicevic
- Department for Pharmaceutical Technologies, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Zeljko Ivosevic
- Faculty of Medical Sciences, Human Genetics, University of Kragujevac, 34000 Kragujevac, Serbia; (B.L.); (Z.I.)
| | - Aleksandar Dagovic
- Oncology and Radiotherapy Centre, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nevena Milivojevic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Odysseas Kokkinos
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guilford GU2 7XH, UK
| | - Vasileios Vavourakis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|