Stamov T, Stamov G, Stamova I, Gospodinova E. Lyapunov approach to manifolds stability for impulsive Cohen-Grossberg-type conformable neural network models.
MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023;
20:15431-15455. [PMID:
37679186 DOI:
10.3934/mbe.2023689]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In this paper, motivated by the advantages of the generalized conformable derivatives, an impulsive conformable Cohen-Grossberg-type neural network model is introduced. The impulses, which can be also considered as a control strategy, are at fixed instants of time. We define the notion of practical stability with respect to manifolds. A Lyapunov-based analysis is conducted, and new criteria are proposed. The case of bidirectional associative memory (BAM) network model is also investigated. Examples are given to demonstrate the effectiveness of the established results.
Collapse