1
|
Deng R, Liu Y, Wu X, Zhao N, Deng J, Pan T, Cao L, Zhan F, Qiao X. Probing the interaction of hesperidin showing antiproliferative activity in colorectal cancer cells and human hemoglobin. Int J Biol Macromol 2024; 281:136078. [PMID: 39341316 DOI: 10.1016/j.ijbiomac.2024.136078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Hesperidin, a flavanone glycoside abundant in citrus is known to possess anti-carcinogenic properties. However, its main interaction with cancer cells and blood proteins is not well-studied yet. Here we have explored the interactions of hesperidin with human colorectal cancer cells, HCT116, and human hemoglobin (HHb) with several experimental and theoretical studies. Cellular assays showed that hesperidin interacted with colorectal cancer cells and induced membrane damage, colony formation inhibition, oxidative stress, mitochondrial dysfunction, Bax/Bcl-2, caspase-9, and caspase-3 upregulation, and cytochrome c release determined by cellular, qPCR and ELISA assays. The interaction of the hesperidin with HHb indicated the formation of a static complex mainly with the assistance of hydrogen bonds which lead to partial folding of protein determined by spectroscopy, molecular docking, and molecular dynamic studies. In conclusion, these findings show that hesperidin with potential binding affinity with a plasma protein model can also show promising anticancer activities against colorectal cancer cells.
Collapse
Affiliation(s)
- Ruiming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi, China.
| | - Yanfang Liu
- The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China; Yunnan University, Kunming 650504, Yunnan, China
| | - Xiangyu Wu
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, Jiangsu, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London SE1 1UL, United Kingdom
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing University, School of Medicine, Chongqing 404000, China
| | - Xiao Qiao
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, Jiangsu, China.
| |
Collapse
|
2
|
Muroni A, Minicozzi V, Piro MC, Sinibaldi F, Mei G, Di Venere A. Human cytochrome C natural variants: Studying the membrane binding properties of G41S and Y48H by fluorescence energy transfer and molecular dynamics. Int J Biol Macromol 2024; 274:133371. [PMID: 38914400 DOI: 10.1016/j.ijbiomac.2024.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Cytochrome C (cyt C), the protein involved in oxidative phosphorylation, plays several other crucial roles necessary for both cell life and death. Studying natural variants of cyt C offers the possibility to better characterize the structure-to-function relationship that modulates the different activities of this protein. Naturally mutations in human cyt C (G41S and Y48H) occur in the protein central Ω-loop and cause thrombocytopenia 4. In this study, we have investigated the binding of such variants and of wild type (wt) cyt C to synthetic cardiolipin-containing vesicles. The mutants have a lower propensity in membrane binding, displaying higher dissociation constants with respect to the wt protein. Compressibility measurements reveal that both variants are more flexible than the wt, suggesting that the native central Ω-loop is important for the interaction with membranes. Such hypothesis is supported by molecular dynamics simulations. A minimal distance analysis indicates that in the presence of cardiolipin the central Ω-loop of the mutants is no more in contact with the membrane, as it happens instead in the case of wt cyt C. Such finding might provide a hint for the reduced membrane binding capacity of the variants and their enhanced peroxidase activity in vivo.
Collapse
Affiliation(s)
- Alessia Muroni
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; INFN, Section of Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Maria Cristina Piro
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Federica Sinibaldi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Almerinda Di Venere
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
3
|
Chertkova RV, Oleynikov IP, Pakhomov AA, Sudakov RV, Semenova MA, Arutyunyan AM, Ptushenko VV, Kirpichnikov MP, Dolgikh DA, Vygodina TV. The Increase in the Peroxidase Activity of the Cytochrome C with Substitutions in the Universal Binding Site Is Associated with Changes in the Ability to Interact with External Ligands. Int J Mol Sci 2024; 25:8237. [PMID: 39125806 PMCID: PMC11311590 DOI: 10.3390/ijms25158237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cytochrome c (CytC), a one-electron carrier, transfers electrons from complex bc1 to cytochrome c oxidase (CcO) in the electron-transport chain. Electrostatic interaction with the partners, complex bc1 and CcO, is ensured by a lysine cluster near the heme forming the Universal Binding Site (UBS). We constructed three mutant variants of mitochondrial CytC with one (2Mut), four (5Mut), and five (8Mut) Lys->Glu substitutions in the UBS and some compensating Glu->Lys substitutions at the periphery of the UBS for charge compensation. All mutants showed a 4-6 times increased peroxidase activity and accelerated binding of cyanide to the ferric heme of CytC. In contrast, decomposition of the cyanide complex with ferrous CytC, as monitored by magnetic circular dichroism spectroscopy, was slower in mutants compared to WT. Molecular dynamic simulations revealed the increase in the fluctuations of Cα atoms of individual residues of mutant CytC compared to WT, especially in the Ω-loop (70-85), which can cause destabilization of the Fe…S(Met80) coordination link, facilitation of the binding of exogenous ligands cyanide and peroxide, and an increase in peroxidase activity. It was found that only one substitution K72E is enough to induce all these changes, indicating the significance of K72 and the Ω-loop (70-85) for the structure and physiology of mitochondrial CytC. In this work, we also propose using a ferro-ferricyanide buffer as a substrate to monitor the peroxidase activity of CytC. This new approach allows us to determine the rate of peroxidase activity at moderate (200 µM) concentrations of H2O2 and avoid complications of radical formation during the reaction.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Ilya P. Oleynikov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia (R.V.S.); (A.M.A.); (V.V.P.)
| | - Alexey A. Pakhomov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Roman V. Sudakov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia (R.V.S.); (A.M.A.); (V.V.P.)
| | - Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Alexander M. Arutyunyan
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia (R.V.S.); (A.M.A.); (V.V.P.)
| | - Vasily V. Ptushenko
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia (R.V.S.); (A.M.A.); (V.V.P.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Tatiana V. Vygodina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia (R.V.S.); (A.M.A.); (V.V.P.)
| |
Collapse
|
4
|
Kopeć M, Borek-Dorosz A, Jarczewska K, Barańska M, Abramczyk H. The role of cardiolipin and cytochrome c in mitochondrial metabolism of cancer cells determined by Raman imaging: in vitro study on the brain glioblastoma U-87 MG cell line. Analyst 2024; 149:2697-2708. [PMID: 38506099 DOI: 10.1039/d4an00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, we present Raman imaging as a non-invasive approach for studying changes in mitochondrial metabolism caused by cardiolipin-cytochrome c interactions. We investigated the effect of mitochondrial dysregulation on cardiolipin (CL) and cytochrome c (Cyt c) interactions for a brain cancer cell line (U-87 MG). Mitochondrial metabolism was monitored by checking the intensities of the Raman bands at 750 cm-1, 1126 cm-1, 1310 cm-1, 1337 cm-1, 1444 cm-1 and 1584 cm-1. The presented results indicate that under pathological conditions, the content and redox status of Cyt c in mitochondria can be used as a Raman marker to characterize changes in cellular metabolism. This work provides evidence that cardiolipin-cytochrome c interactions are crucial for mitochondrial energy homeostasis by controlling the redox status of Cyt c in the electron transport chain, switching from disabling Cyt c reduction and enabling peroxidase activity. This paper provides experimental support for the hypothesis of how cardiolipin-cytochrome c interactions regulate electron transfer in the respiratory chain, apoptosis and mROS production in mitochondria.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | | | - Karolina Jarczewska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Małgorzata Barańska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
5
|
Paradisi A, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Borsari M, Sola M, Battistuzzi G. Effects of removal of the axial methionine heme ligand on the binding of S. cerevisiae iso-1 cytochrome c to cardiolipin. J Inorg Biochem 2024; 252:112455. [PMID: 38141433 DOI: 10.1016/j.jinorgbio.2023.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marzia Bellei
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Borsari
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy.
| |
Collapse
|
6
|
Abramczyk H, Surmacki J. Effect of COVID-19 mRNA Vaccine on Human Lung Carcinoma Cells In Vitro by Means of Raman Spectroscopy and Imaging. ACS OMEGA 2023; 8:42555-42564. [PMID: 38024689 PMCID: PMC10653051 DOI: 10.1021/acsomega.3c05287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
The effect of COVID-19 mRNA vaccine on human lung epithelial carcinoma cells (A549) in vitro as a convenient preclinical model was studied by means of Raman spectroscopy and imaging. The article focuses on Raman imaging as a tool to explore apoptosis and oxidative phosphorylation in mitochondrial dysfunctions. The Raman results demonstrate alterations in the oxidation-reduction pathways associated with cytochrome c. We found that the COVID-19 mRNA vaccine downregulates the concentration of cytochrome c upon incubation with tumorous lung cells. The concentration of the oxidized form of cytochrome c in the mitochondria of lung cells decreases upon incubation with the COVID-19 mRNA vaccine. A lower concentration of oxidized cytochrome c in mitochondria illustrates lower effectiveness of oxidative phosphorylation (respiration), reduced apoptosis, and lessened ATP production. Moreover, mRNA vaccine significantly increases de novo lipids synthesis in lipid droplets up to 96 h and alterations in biochemical composition. It seems that the lipid composition of cells returns to the normal level for a longer incubation time (14 days). In the cell nucleus, the mRNA vaccine does not produce statistically significant changes.
Collapse
Affiliation(s)
- Halina Abramczyk
- Department of Chemistry,
Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular
Spectroscopy, Lodz University of Technology, Wróblewskiego 15, 93-590 Łódź, Poland
| | - Jakub Surmacki
- Department of Chemistry,
Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular
Spectroscopy, Lodz University of Technology, Wróblewskiego 15, 93-590 Łódź, Poland
| |
Collapse
|
7
|
Chertkova RV, Oleynikov IP, Pakhomov AA, Sudakov RV, Orlov VN, Semenova MA, Arutyunyan AM, Ptushenko VV, Kirpichnikov MP, Dolgikh DA, Vygodina TV. Mutant Cytochrome C as a Potential Detector of Superoxide Generation: Effect of Mutations on the Function and Properties. Cells 2023; 12:2316. [PMID: 37759538 PMCID: PMC10528150 DOI: 10.3390/cells12182316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Cytochrome c (CytC) is a single-electron carrier between complex bc1 and cytochrome c-oxidase (CcO) in the electron transport chain (ETC). It is also known as a good radical scavenger but its participation in electron flow through the ETC makes it impossible to use CytC as a radical sensor. To solve this problem, a series of mutants were constructed with substitutions of Lys residues in the universal binding site (UBS) which interact electrostatically with negatively charged Asp and Glu residues at the binding sites of CytC partners, bc1 complex and CcO. The aim of this study was to select a mutant that had lost its function as an electron carrier in the ETC, retaining the structure and ability to quench radicals. It was shown that a mutant CytC with substitutions of five (8Mut) and four (5Mut) Lys residues in the UBS was almost inactive toward CcO. However, all mutant proteins kept their antioxidant activity sufficiently with respect to the superoxide radical. Mutations shifted the dipole moment of the CytC molecule due to seriously changed electrostatics on the surface of the protein. In addition, a decrease in the redox potential of the protein as revealed by the redox titrations of 8Mut was detected. Nevertheless, the CD spectrum and dynamic light scattering suggested no significant changes in the secondary structure or aggregation of the molecules of CytC 8Mut. Thus, a variant 8Mut with multiple mutations in the UBS which lost its ability to electron transfer and saved most of its physico-chemical properties can be effectively used as a detector of superoxide generation both in mitochondria and in other systems.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Ilya P. Oleynikov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Alexey A. Pakhomov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Roman V. Sudakov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Victor N. Orlov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Alexander M. Arutyunyan
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Vasily V. Ptushenko
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Tatiana V. Vygodina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| |
Collapse
|
8
|
Atlante A, Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr Issues Mol Biol 2023; 45:4451-4479. [PMID: 37232752 PMCID: PMC10217700 DOI: 10.3390/cimb45050283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
9
|
Turilli-Ghisolfi ES, Lualdi M, Fasano M. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Biomolecules 2023; 13:683. [PMID: 37189430 PMCID: PMC10135655 DOI: 10.3390/biom13040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
10
|
Tsepaeva OV, Nemtarev AV, Pashirova TN, Khokhlachev MV, Lyubina AP, Amerkhanova SK, Voloshina AD, Mironov VF. Novel triphenylphosphonium amphiphilic conjugates of glycerolipid type: synthesis, cytotoxic and antibacterial activity, and targeted cancer cell delivery. RSC Med Chem 2023; 14:454-469. [PMID: 36970146 PMCID: PMC10034156 DOI: 10.1039/d2md00363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This work deals with the creation of new cationic triphenylphosphonium amphiphilic conjugates of glycerolipid type (TPP-conjugates), bearing a pharmacophore terpenoid fragment (abietic acid and betulin) and a fatty acid residue in one hybrid molecule as a new generation of antitumor agents with high activity and selectivity. The TPP-conjugates showed high mitochondriotropy leading to the development of mitochondriotropic delivery systems such as TPP-pharmacosomes and TPP-solid lipid particles. Introducing the betulin fragment into the structure of a TPP-conjugate (compound 10) increases the cytotoxicity 3 times towards tumor cells of prostate adenocarcinoma DU-145 and 4 times towards breast carcinoma MCF-7 compared to TPP-conjugate 4a in the absence of betulin. TPP-hybrid conjugate 10 with two pharmacophore fragments, betulin and oleic acid, has significant cytotoxicity toward a wide range of tumor cells. The lowest IC50 of 10 is 0.3 μM toward HuTu-80. This is at the level of the reference drug doxorubicin. TPP-pharmacosomes (10/PC) increased the cytotoxic effect approximately 3 times toward HuTu-80 cells, providing high selectivity (SI = 480) compared to the normal liver cell line Chang liver.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Michail V Khokhlachev
- Kazan (Volga Region) Federal University Kremlevskaya Str. 18 420008 Kazan Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Syumbelya K Amerkhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| |
Collapse
|