1
|
Kani JAS, Pandian SIA, J A, Asir RHJ. Attention deficit hyperactivity disorder (ADHD) detection for IoT based EEG signal. Comput Methods Biomech Biomed Engin 2024; 27:2269-2287. [PMID: 39300855 DOI: 10.1080/10255842.2024.2399025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
ADHD is a prevalent childhood behavioral problem. Early ADHD identification is essential towards addressing the disorder and minimizing its negative impact on school, career, relationships, as well as general well-being. The present ADHD diagnosis relies primarily on an emotional assessment which can be readily influenced by clinical expertise and lacks a basis of objective markers. In this paper, an innovative IoT based ADHD detection is proposed using an EEG signal. To the input EEG signal, the min-max normalization technique is processed. Features are extracted as the subsequent step, where improved fuzzy feature, in which the entropy is estimated to increase the effectiveness of recognizing the vector along with, fractal dimension, wavelet transform and non-linear features are extracted. Also, proposes the new hybrid PUDMO algorithm to select the optimal features from the extracted feature set. Subsequently, the selected features are fed to the proposed hybrid detection system that including IDBN and LSTM classifier to detect whether it is ADHD or not. Further, the weights of both classifiers are tuned optimally as per the hybrid PUDMO algorithm to enhance the detection performance. The PUDMO achieved an accuracy of 0.9649 in the best statistical metric, compared to the SLO's 0.8266, SOA's 0.8201, SMA's 0.8060, BRO's 0.8563, DE's 0.8083, POA's 0.8537, and DMOA's 0.8647, respectively. Thus, the assessments and detection help the clinicians to take appropriate decision.
Collapse
Affiliation(s)
- J Aarthy Suganthi Kani
- Research Scholar, Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences Karunya Nagar, Coimbatore, Tamil Nadu, India
| | - S Immanuel Alex Pandian
- Assistant Professor, Department of Electronics and Communication Engineering, T. John Institute of Technology, Bengaluru, Karnataka, India
| | - Anitha J
- Associate Professor, Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences Karunya Nagar, Coimbatore, Tamil Nadu, India
| | - R Harry John Asir
- Product Security Test Lead, Product Security and Cyber Security, Enphase Solar Energy Pvt. Ltd., Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Agushaka JO, Ezugwu AE, Olaide ON, Akinola O, Zitar RA, Abualigah L. Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems. JOURNAL OF BIONIC ENGINEERING 2022; 20:1263-1295. [PMID: 36530517 PMCID: PMC9745293 DOI: 10.1007/s42235-022-00316-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.
Collapse
Affiliation(s)
- Jeffrey O. Agushaka
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
- Department of Computer Science, Federal University of Lafia, Lafia, 950101 Nigeria
| | - Absalom E. Ezugwu
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
- Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520 South Africa
| | - Oyelade N. Olaide
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Olatunji Akinola
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201 KwaZulu-Natal South Africa
| | - Raed Abu Zitar
- Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, 38044 Abu Dhabi, United Arab Emirates
| | - Laith Abualigah
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328 Jordan
- Faculty of Information Technology, Middle East University, Amman, 11831 Jordan
- Faculty of Information Technology, Applied Science Private University, Amman, 11931 Jordan
- School of Computer Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2819378. [DOI: 10.1155/2022/2819378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Heart disease causes major death across the entire globe. Hence, heart disease prediction is a vital part of medical data analysis. Recently, various data mining and machine learning practices have been utilized to detect heart disease. However, these techniques are inadequate for effectual heart disease prediction due to the deficient test data. In order to progress the efficacy of detection performance, this research introduces the hybrid feature selection method for selecting the best features. Moreover, the missed value from the input data is filled with the quantile normalization and missing data imputation method. In addition, the best features relevant to disease detection are selected through the proposed hybrid Congruence coefficient Kumar–Hassebrook similarity. In addition, heart disease is predicted using SqueezeNet, which is tuned by the dwarf mongoose optimization algorithm (DMOA) that adapts the feeding aspects of dwarf mongoose. Moreover, the experimental result reveals that the DMOA-SqueezeNet method attained a maximum accuracy of 0.925, sensitivity of 0.926, and specificity of 0.918.
Collapse
|
4
|
Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: comparative analysis, open challenges and new trends. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|