1
|
Jeschke P. The continuing significance of chiral agrochemicals. PEST MANAGEMENT SCIENCE 2025. [PMID: 39821341 DOI: 10.1002/ps.8655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Chemical crop protection is one of the most cost-effective methods for agriculture, as crop failures can be prevented, and sustainable growth can be enabled regardless of the seasons. Agricultural production must be significantly increased in the future to meet the food needs of a growing world population. However, the continued loss of established active ingredients due to consumer perceptions, changing needs of farmers and ever-changing regulatory requirements is higher than annually new active ingredients introduced to the market. The development of innovative active ingredients is therefore essential to continuously improve the selectivity, efficacy and favorable environmental profile of agrochemicals. Molecules with stereogenic centers can be considered here, as they often have different properties than non-chiral molecules. Natural products and their congeners are still a valuable source of inspiration for chiral agrochemicals. However, only a few novel chiral agrochemicals are currently produced on an industrial scale as pure stereoisomers or in enriched form. As of 2018, around 43% of the 35 chiral products introduced to the market (herbicides, fungicides, insecticides, acaricides, and nematicides) contain one or more stereogenic centers in the molecule, and almost 69% of them have been marketed as racemic mixtures of enantiomers or stereoisomers. Surprisingly, the proportion of chiral agrochemicals is in the same order of magnitude as in the time frame from 2007 to 2017 with around 42%, respectively. This report therefore provides an overview of the continued importance of chiral agrochemicals brought to market in the last 6 years and describes the inherent related challenges of modern agrochemicals through the management of key aspects arising from innovative crop protection products. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peter Jeschke
- Heinrich-Heine-University Düsseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, Duesseldorf, Germany
| |
Collapse
|
2
|
Ventura-Hernández KI, Delgado-Alvarado E, Pawar TJ, Olivares-Romero JL. Chirality in Insecticide Design and Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20722-20737. [PMID: 39255417 DOI: 10.1021/acs.jafc.4c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Chirality plays a crucial role in the design and efficacy of insecticides, significantly influencing their biological activity, selectivity, and environmental impact. Recent advancements in chiral insecticides have focused on enhancing their effectiveness, reducing toxicity to nontarget organisms, and improving environmental sustainability. This review provides a comprehensive overview of the current state of knowledge on chiral insecticides, including neonicotinoids, isoxazolines, and sulfiliminyls. We discuss the stereochemistry, synthetic development, mode of action, and environmental fate of these compounds. The review highlights the importance of chirality in optimizing insecticidal properties and underscores the need for continued research into novel chiral compounds and advanced synthesis technologies. By understanding the role of chirality, we can develop more effective and environmentally friendly insecticides for sustainable pest management.
Collapse
Affiliation(s)
- Karla Irazú Ventura-Hernández
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa-Enríquez, Veracruz, México 91190
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río, Veracruz, México 94294
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
| |
Collapse
|
3
|
Ward MD, Docherty R, Minion L, Shi X, Anson K, Siligardi G, Nelson J, Wade J, Fuchter MJ. Development of low-cost, compact chiroptical imaging systems. NANOSCALE 2024; 16:11623-11632. [PMID: 38864422 PMCID: PMC11189636 DOI: 10.1039/d4nr01651c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Circular dichroism spectroscopy is a key probe of the structural and optical properties of chiral materials, however, commercial circular dichroism spectrometers are large, prohibitively expensive and rarely offer environmental control of the sample under test. Using Fresnel rhombs as inexpensive broadband quarter-wave plates, we demonstrate two novel, low-cost (<£2000) and portable imaging systems controlled by our own bespoke open-source control software which are capable of spatially mapping the circular dichroism of chiral solid state films. By coupling these imaging systems with a temperature controlled stage, we show that we can rapidly identify the thermal processing conditions required to maximise circular dichroism in chiral solid state films by measuring circular dichroism in situ during thermal annealing of a sample under test. The accuracy and spatial resolution of these circular dichroism imagers are cross-compared against our previous studies using an existing circular dichroism imaging system at the Diamond Light Source and are shown to be in good agreement, with a sensitivity down to 250 mdeg and a spatial resolution of 100 μm.
Collapse
Affiliation(s)
- Matthew D Ward
- Department of Physics, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ronan Docherty
- Department of Materials, Exhibition Road, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Louis Minion
- Department of Materials, Exhibition Road, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK.
- B23 Beamline, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Xingyuan Shi
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK.
| | - Kai Anson
- Department of Physics, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, UK
| | - Giuliano Siligardi
- B23 Beamline, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Jenny Nelson
- Department of Physics, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jessica Wade
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Materials, Exhibition Road, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Matthew J Fuchter
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
4
|
Fourel I, Roque F, Orabi P, Augiron S, Couzi FX, Puech MP, Chetot T, Lattard V. Stereoselective bioaccumulation of chiral anticoagulant rodenticides in the liver of predatory and scavenging raptors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170545. [PMID: 38296081 DOI: 10.1016/j.scitotenv.2024.170545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are persistent chiral pesticides used to control rodent populations. Raptors are protected species and may be exposed through the ingestion of rodents contaminated with SGARs. Commercial formulations of SGARs are a mixture of four stereoisomers (E1, E2, E3, E4): the cis- and trans-diastereoisomers are each a racemic mixture of two enantiomers. In this study, the residue levels of all SGARs (bromadiolone, difenacoum, brodifacoum, difethialone, flocoumafen) were evaluated in the liver of 529 raptor carcasses. All species (n = 18) and 75 % of individuals (n = 396) were SGAR positive and 29 % (n = 154) had summed hepatic concentrations above 100 ng/g ww. Concentrations were higher for predators with facultative scavenging behaviors than for predators and obligate scavengers. Bromadiolone, brodifacoum and difenacoum had equivalent hepatic prevalence (between 48.9 and 49.9 %), and difethialone was detected less frequently (31.7 %). Concentrations and enantiomeric fractions of the four stereoisomers of all SGARs are described in to demonstrate the biological enantioselectivity of these chiral pesticides in the food chain. A difference was observed between the proportions of SGARs diastereoisomers and stereoisomers in the liver of all raptor species and in commercial baits. The enantioselective bioaccumulation of E1-trans-bromadiolone, E3-cis-brodifacoum, E1-cis-difenacoum and E3-cis-difethialone was characterized and represented 96.8 % of total SGARs hepatic residues. While hepatic concentrations were heterogeneous, the proportions of stereoisomers and diastereoisomers were homogeneous with no inter-individual or inter-species differences (only E1-trans-bromadiolone is present in hepatic residues). However, proportions of brodifacoum stereoisomers and diastereoisomers were more scattered, probably due to their slower elimination. This could provide an opportunity to date the exposure of individuals to brodifacoum. We highlight the need to consider each SGAR as four molecular entities (four stereoisomers) rather than one. These findings suggest new commercial formulations with the less persistent stereoisomers could reduce secondary exposure of non-target species.
Collapse
Affiliation(s)
- Isabelle Fourel
- USC 1233-INRAE RS2GP, VetAgro Sup, Univ Lyon, F-69280 Marcy l'Etoile, France.
| | - Florence Roque
- CNITV, VetAgro Sup, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - Pascal Orabi
- French Bird Protection League (LPO France), France
| | - Steve Augiron
- SEOR, 13 ruelle des Orchidées, 97440 Saint-André, La Réunion, France
| | | | | | - Thomas Chetot
- USC 1233-INRAE RS2GP, VetAgro Sup, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233-INRAE RS2GP, VetAgro Sup, Univ Lyon, F-69280 Marcy l'Etoile, France
| |
Collapse
|
5
|
Pérez-Pereira A, Carrola JS, Tiritan ME, Ribeiro C. Enantioselectivity in ecotoxicity of pharmaceuticals, illicit drugs, and industrial persistent pollutants in aquatic and terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169573. [PMID: 38151122 DOI: 10.1016/j.scitotenv.2023.169573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
At present, there is a serious concern about the alarming number of recalcitrant contaminants that can negatively affect biodiversity threatening the ecological status of marine, estuarine, freshwater, and terrestrial ecosystems (e.g., agricultural soils and forests). Contaminants of emerging concern (CEC) such as pharmaceuticals (PHAR), illicit drugs (ID), industrial persistent pollutants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chiral ionic solvents are globally spread and potentially toxic to non-target organisms. More than half of these contaminants are chiral and have been measured at different enantiomeric proportions in diverse ecosystems. Enantiomers can exhibit different toxicodynamics and toxicokinetics, and thus, can cause different toxic effects. Therefore, the enantiomeric distribution in occurrence cannot be neglected as the toxicity and other adverse biological effects are expected to be enantioselective. Hence, this review aims to reinforce the recognition of the stereochemistry in environmental risk assessment (ERA) of chiral CEC and gather up-to-date information about the current knowledge regarding the enantioselectivity in ecotoxicity of PHAR, ID, persistent pollutants (PCBs and PBDEs) and chiral ionic solvents present in freshwater and agricultural soil ecosystems. We performed an online literature search to obtain state-of-the-art research about enantioselective studies available for assessing the impact of these classes of CEC. Ecotoxicity assays have been carried out using organisms belonging to different trophic levels such as microorganisms, plants, invertebrates, and vertebrates, and considering ecologically relevant aquatic and terrestrial species or models organisms recommended by regulatory entities. A battery of ecotoxicity assays was also reported encompassing standard acute toxicity to sub-chronic and chronic assays and different endpoints as biomarkers of toxicity (e.g., biochemical, morphological alterations, reproduction, behavior, etc.). Nevertheless, we call attention to the lack of knowledge about the potential enantioselective toxicity of many PHAR, ID, and several classes of industrial compounds. Additionally, several questions regarding key species, selection of most appropriate toxicological assays and ERA of chiral CEC are addressed and critically discussed.
Collapse
Affiliation(s)
- A Pérez-Pereira
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal
| | - J S Carrola
- University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| | - M E Tiritan
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.
| | - C Ribeiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| |
Collapse
|
6
|
Vashistha VK, Sethi S, Mittal A, Das DK, Pullabhotla RVSR, Bala R, Yadav S. Stereoselective analysis of chiral pesticides: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:153. [PMID: 38225517 DOI: 10.1007/s10661-024-12310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Chiral organic pollutants, including pesticides, herbicides, medicines, flame retardants, and polycyclic musk, represent a significant threat to both the environment and human health. The presence of asymmetric centers in the structure of chiral pesticides introduces stereoisomers with distinct distributions, fates, biomagnification capacities, and cytotoxicities. In aquatic environments, pesticides, as persistent/pseudo-persistent compounds, have been detected in substantial quantities, posing severe risks to non-target species and, ultimately, public health through water supply and food exposures. In response to this environmental challenge, stereoselective analytical methods have gained prominence for the identification of pesticide/drug enantiomers in recent years. This review examines the environmental impact of chiral pesticides, emphasizing the distinct biological activities and distribution patterns of their stereoisomers. By highlighting the advancements in liquid chromatography for enantiomeric analysis, the review aims to underscore the urgent need for a comprehensive understanding of these pollutants to facilitate informed remediation strategies and ensure the safer dispersal of chiral organic pollutants in the environment, thereby addressing the potential risks they pose to ecosystems and human health. Future research should focus on developing sustainable and efficient methodologies for the precise analysis of stereoisomers in complex matrices, particularly in sewage water, emphasizing the importance of sewage processing plants in ensuring water quality.
Collapse
Affiliation(s)
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurugram, Haryana, India
| | - Ankit Mittal
- Department of Chemistry, Shyamlal College, University of Delhi, Delhi, India
| | - Dipak Kumar Das
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Rajasekhar V S R Pullabhotla
- Department of Chemistry, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Renu Bala
- Department of Chemistry, Kalindi College, University of Delhi, Delhi, India
| | - Suman Yadav
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, India
| |
Collapse
|
7
|
Critto EF, Giovannoni S, Lancioni C, Castells CB. Enantioseparation of agrochemicals by gas chromatography. Exploring columns based on cyclodextrin derivatives dissolved into polysiloxanes. J Sep Sci 2024; 47:e2300804. [PMID: 38234022 DOI: 10.1002/jssc.202300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
The main goal of this work is to expand the availability of chiral columns for the analysis of agrochemicals by gas chromatography. A broader offer of chiral stationary phases would allow shifting toward enantioselective analytical techniques environmentally more friendly for those compounds. We prepared seven chiral capillary columns based on derivatives of either, β-cyclodextrin or γ-cyclodextrins dissolved at high concentrations, in two typical polysiloxanes with different polarities, demonstrating not only the significance of the chiral selector but also of the polymer solvent for achieving adequate enantioseparation of some agrochemicals. The enantiorecognition ability of each column was evaluated with 20 volatile and semivolatile agrochemicals, possessing one or two chiral centers. Besides, to elute more polar agrochemicals, as well as to enhance enantioselectivity, three derivatization procedures targeting the carboxyl and/or amine group were evaluated. The results revealed that the prepared column consisting of octakis(2,3-di-O-acetyl-6-O-tertbutyldimethylsilyl)-γ-cyclodextrin dissolved in (14%-cyanopropyl-phenyl)-86%-methyl-polysiloxane provides the broadest enantiorecognition capacity. This column allowed the enantioseparation of seventeen chiral agrochemicals, including metalaxyl, furalaxyl, and four imidazolinones, which were not enantioseparated in the remaining columns. To the best of our knowledge, glufosinate, fluorochloridone, fenarimol, furalaxyl, and four imidazolinones were enantioseparated by gas chromatography for the first time.
Collapse
Affiliation(s)
- Emilia Frickel Critto
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), División Química Analítica, Facultad de Ciencias Exactas, UNLP, CIC-PBA, La Plata, Argentina
| | - Sol Giovannoni
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), División Química Analítica, Facultad de Ciencias Exactas, UNLP, CIC-PBA, La Plata, Argentina
| | - Carlina Lancioni
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), División Química Analítica, Facultad de Ciencias Exactas, UNLP, CIC-PBA, La Plata, Argentina
| | - Cecilia B Castells
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), División Química Analítica, Facultad de Ciencias Exactas, UNLP, CIC-PBA, La Plata, Argentina
| |
Collapse
|
8
|
Juvancz Z, Bodáné-Kendrovics R, Laczkó Z, Iványi R, Varga E. Chiral Separations of Pyrethroic Acids Using Cyclodextrin Selectors. Molecules 2022; 27:8718. [PMID: 36557853 PMCID: PMC9782444 DOI: 10.3390/molecules27248718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022] Open
Abstract
Pyrethroid insecticides are broadly used. They have low toxicity for warm-blooded living creatures, but high toxicity for both insects and fish. Therefore, it is important to reduce the environmental impact of pyrethroids. Pyrethroic acids are chiral compounds. An effective way to decrease pollution is to use enantio-pure insecticide products instead of their racemic mixtures. Enantiomer-pure products require enantiomer selective synthesis and analysis. The chiral selective analysis of pyrethroic acids (an intermediate of pyrethroids) is also important in terms of process control and from the point of view of their degradation metabolism in the environment. This study used various enantiomeric selective chromatographic methods for the separation of different pyrethroic acids, including gas chromatography, supercritical fluid chromatography and capillary electrophoresis. Systematic experiments were conducted to find the optimum conditions for their chiral separation. The employed enantio-selective agents were cyclodextrin derivatives with different ring sizes and substitution patterns. The β-cyclodextrin proved to be excellent for the chiral separation of these acids. The different chiral recognition mechanisms were established using different ring-sized cyclodextrins. The results of these systematic studies demonstrated the correlations of the chiral selectivity features of selectors and the structures of analytes.
Collapse
Affiliation(s)
- Zoltán Juvancz
- Rejtőff Sándor Faculty of Light Industry and Environmental Engineering, Institute of Environmental Engineering and Natural Science, Óbuda University, Doberdó út 6, H-1034 Budapest, Hungary
| | - Rita Bodáné-Kendrovics
- Rejtőff Sándor Faculty of Light Industry and Environmental Engineering, Institute of Environmental Engineering and Natural Science, Óbuda University, Doberdó út 6, H-1034 Budapest, Hungary
| | - Zita Laczkó
- Rejtőff Sándor Faculty of Light Industry and Environmental Engineering, Institute of Environmental Engineering and Natural Science, Óbuda University, Doberdó út 6, H-1034 Budapest, Hungary
| | - Róbert Iványi
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | | |
Collapse
|
9
|
Lucci E, Dal Bosco C, Antonelli L, Fanali C, Fanali S, Gentili A, Chankvetadze B. Enantioselective high-performance liquid chromatographic separations to study occurrence and fate of chiral pesticides in soil, water, and agricultural products. J Chromatogr A 2022; 1685:463595. [DOI: 10.1016/j.chroma.2022.463595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
10
|
Wang N, Zhao L, Liu C, Zhang J, He Y, Yang H, Liu X. Chiral Detection of Glucose: An Amino Acid-Assisted Surface-Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals. Anal Chem 2022; 94:14565-14572. [PMID: 36219134 DOI: 10.1021/acs.analchem.2c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is of considerable concern to establish chiral detection methods for revealing enantioselective interactions among chiral molecules. Surface-enhanced Raman scattering (SERS) spectroscopy is sensitive to molecular interaction due to bond variations. However, its application in chiral detection is underexplored. Inspired by the chiral selectivity toward glucose and amino acids in life, we herein propose a SERS strategy based on molecular interactions for the discrimination of d- and l-glucose (Glu) using chiral phenylalanine (Phe) decorated on gold nanoparticles as a chirality selector and Raman reporter. Interestingly, the SERS signal of l-Phe is enhanced by d-Glu but suppressed by l-Glu. In contrast, the SERS signal of d-Phe is increased by l-Glu but decreased by d-Glu. According to the above-observed intensity change (ΔI) of the SERS signal of Phe induced by Glu, it is easy to determine the chiral configurations (judged by the positive or negative sign of ΔI), enantiomeric excess (ee) values, and concentrations (estimated by the magnitude of ΔI) of Glu. Taking advantage of the high SERS enhancement and opposite enantiomeric effects on SERS signals, the proposed strategy enables enantiomeric discrimination at a low Glu concentration (10-6 mol/L) and is further exerted for the noninvasive detection of d-/l-Glu in saliva samples. In contrast, the common chiroptical analysis tool of circular dichroism (CD) spectroscopy failed to directly detect Glu enantiomers.
Collapse
Affiliation(s)
- Ning Wang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Lijun Zhao
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Chang Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Jian Zhang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Yanxiu He
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai200234, China
| |
Collapse
|
11
|
Enantiomer fraction evaluation of the four stereoisomers of second-generation anticoagulant rodenticides in biological matrices with polysaccharide-based chiral selectors and liquid chromatography tandem mass spectrometry. J Chromatogr A 2022; 1676:463209. [PMID: 35717864 DOI: 10.1016/j.chroma.2022.463209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Numerous cases of wildlife exposure to five second-generation anticoagulant rodenticides have been reported worldwide, and residues of these chiral pesticides in biological matrices are still quantified by achiral liquid chromatography methods. However, they are a mixture of cis- and trans-diastereomers, thus a mixture of four stereoisomers. Their persistence must be evaluated in a differentiated way in the food chain of concerned predator species in order to reduce the environmental impact. This article presents an evaluation of the chiral selectivity of five polysaccharide-based chiral selectors for the four stereoisomers of bromadiolone, difenacoum, brodifacoum, flocoumafen and difethialone. Different chromatographic parameters, influencing the chiral separation, such as organic modifier (acetonitrile, methanol), percentage of formic acid and water content in the mobile phase are systematically tested for all columns. It was shown that little amount of water added to the acetonitrile mobile phase may influence the retention behaviors between reversed phase and HILIC-like modes, and consequently the enantiomer elution order of the four stereoisomers. On the contrary, reversed phase is always the observed mode for the methanol water mobile phase. A suitable combination of all these parameters is presented for each second-generation anticoagulant rodenticide with a description of the enantioresolution, the enantiomer elution order and the retention times of the respective stereoisomers. A method is validated for all stereoisomers of each second-generation anticoagulant rodenticide with chicken liver and according to an official bioanalytical guideline. As an example, the enantiomer fraction is evaluated in the liver of a raptor species (rodent predator) exposed to bromadiolone and difenacoum. The results showed that only one enantiomer of trans-bromadiolone and one enantiomer of cis-difenacoum is present in hepatic residues, although all four stereoisomers are present in bromadiolone and difenacoum rodenticide baits.
Collapse
|
12
|
Harrower J, McNaughtan M, Hunter C, Hough R, Zhang Z, Helwig K. Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment-A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3275-3298. [PMID: 34379810 DOI: 10.1002/etc.5191] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics in the aquatic environment is a major problem because of the emergence of antibiotic resistance. The long-term ecological impact on the aquatic environment is unknown. Many sources allow entry of antibiotics into the environment, including wastewater-treatment plants (WWTPs), agricultural runoff, hospital effluent, and landfill leachate. Concentrations of antibiotics in the aquatic environment vary significantly; studies have shown fluoroquinolones, tetracycline, macrolides, sulfonamides, and penicillins to reach 2900, 1500, 9700, 21 400, and 1600 ng L-1 in wastewater effluent samples, respectively. However, concentrations are highly variable between different countries and depend on several factors including seasonal variation, prescription, and WWTP operating procedures. Likewise, the reported concentrations that cause environmental effects vary greatly between antibiotics, even within the same class; however, this predicted concentration for the antibiotics considered was frequently <1000 ngL-1 , indicating that when discharged into the environment along with treated effluent, these antibiotics have a potentially detrimental effect on the environment. Antibiotics are generally quite hydrophilic in nature; however, they can ionize in the aquatic environment to form charged structures, such as cations, zwitterions, and anions. Certain classes, particularly fluoroquinolones and tetracyclines, can adsorb onto solid matrices, including soils, sediment, and sludge, making it difficult to fully understand their chemical fate in the aquatic environment. The adsorption coefficient (Kd ) varies between different classes of antibiotics, with tetracyclines and fluoroquinolones showing the highest Kd values. The Kd values for fluoroquinolones, tetracyclines, macrolides, and sulfonamides have been reported as 54 600, 7600, 130, and 1.37 L kg-1 , respectively. Factors such as pH of the environment, solid matrix (sediment/soil sludge), and ionic strength can influence the Kd ; therefore, several values exist in literature for the same compound. Environ Toxicol Chem 2021;40:3275-3298. © 2021 SETAC.
Collapse
Affiliation(s)
- Jamie Harrower
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Moyra McNaughtan
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| | - Colin Hunter
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Zulin Zhang
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Karin Helwig
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| |
Collapse
|
13
|
Shen Y, Yao X, Jin S, Yang F. Enantiomer/stereoisomer-specific residues of metalaxyl, napropamide, triticonazole, and metconazole in agricultural soils across China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:773. [PMID: 34741224 DOI: 10.1007/s10661-021-09562-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, the residual status of four chiral pesticides including metalaxyl, napropamide, triticonazole, metconazole, and their enantiomers/stereoisomers were investigated in agricultural soils across China. The levels in the soils were detected as non-detected (n.d.)-16.67 ng/g for metalaxyl with a median of 0.14 ng/g; 0.004-32.99 ng/g for napropamide with a median of 0.29 ng/g; n.d.-207.39 ng/g for triticonazole with a median of 1.29 ng/g; and n.d.-71.83 ng/g for metconazole with a median of 1.03 ng/g, respectively. Enantiomer/stereoisomer-specific residues were observed for metalaxyl and triticonazole. R-Metalaxyl and R-triticonazole were identified as the major enantiomers in the soils for the two pesticides. There was no obvious enantioselective residue for napropamide in most of the soils. As for metconazole, metconazole-1 and metconazole-4 were identified as the major stereoisomers in the soils. These results suggest that enantiomer/stereoisomer-specific risk should be considered when assessing the ecological safety of these pesticides in soils.
Collapse
Affiliation(s)
- Yi Shen
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaoshan Yao
- Key Laboratory of Analytical Chemistry of the State Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Analytical Chemistry of the State Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Fangxing Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Thiourea Organocatalysts as Emerging Chiral Pollutants: En Route to Porphyrin-Based (Chir)Optical Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Environmental pollution with chiral organic compounds is an emerging problem requiring innovative sensing methods. Amino-functionalized thioureas, such as 2-(dimethylamino)cyclohexyl-(3,5-bis(trifluoromethyl)phenyl)thiourea (Takemoto’s catalyst), are widely used organocatalysts with virtually unknown environmental safety data. Ecotoxicity studies based on the Vibrio fischeri luminescence inhibition test reveal significant toxicity of Takemoto’s catalyst (EC50 = 7.9 mg/L) and its NH2-substituted analog (EC50 = 7.2–7.4 mg/L). The observed toxic effect was pronounced by the influence of the trifluoromethyl moiety. En route to the porphyrin-based chemosensing of Takemoto-type thioureas, their supramolecular binding to a series of zinc porphyrins was studied with UV-Vis and circular dichroism (CD) spectroscopy, computational analysis and single crystal X-ray diffraction. The association constant values generally increased with the increasing electron-withdrawing properties of the porphyrins and electron-donating ability of the thioureas, a result of the predominant Zn⋯N cation–dipole (Lewis acid–base) interaction. The binding event induced a CD signal in the Soret band region of the porphyrin hosts—a crucial property for chirality sensing of Takemoto-type thioureas.
Collapse
|
15
|
Barreiro JC, Tiritan ME, Cass QB. Challenges and innovations in chiral drugs in an environmental and bioanalysis perspective. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Absolute Configuration Sensing of Chiral Aryl- and Aryloxy-Propionic Acids by Biphenyl Chiroptical Probes. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The absolute configuration of chiral 2-aryl and 2-aryloxy propionic acids, which are among the most common chiral environmental pollutants, has been readily and reliably established by either electronic circular dichroism spectroscopy or optical rotation measurements employing suitably designed 4,4′-disubstituted biphenyl probes. In fact, the 4,4′-biphenyl substitution gives rise to a red shift of the diagnostic electronic circular dichroism signal of the biphenyl A band employed for the configuration assignment, removing its overlap with other interfering dichroic bands and allowing its clear sign identification. The largest A band red shift, and thus the most reliable results, are obtained by employing as a probe the 4,4′-dinitro substituted biphenylazepine 3c. The method was applied to the absolute configuration assignment of 2-arylpropionic acids ibuprofen (1a), naproxen (1b), ketoprofen (1c) and flurbiprofen (1d), as well as to the 2-aryloxypropionic acids 2-phenoxypropionic acid (2a) and 2-naphthoxypropionic acid (2b). This approach, allowing us to reveal the sample’s absolute configuration by simple optical rotation measurements, is potentially applicable to online analyses of both the enantiomeric composition and absolute configuration of these chiral pollutants.
Collapse
|
17
|
Szwaczko K, Miroslaw B, Demchuk OM, Wójciuk G, Mazur L, Pietrusiewicz KM. Metathetic approach to new NORPHOS-related bisphosphanes: facile synthesis and application in asymmetric hydrogenation. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A highly efficient synthesis of new chiral bisphosphanes derived from the renowned NORPHOS ligand is presented. The synthesis involves ring-opening metathesis of NORPHOS dioxide with an external olefin, followed by saturation of the new double bonds and adjustment of the oxidation level of phosphorus centers oxidation level. The synthesized bisphosphanes retain the configuration and enantiomeric purity of the starting NORPHOS. Their utility as ligands in asymmetric catalysis is exemplified using an open-NORPHOS ligand in some benchmark Rh-catalyzed hydrogenations of enamides where excellent chemical yields and enantiomeric purities of the products have been secured. The proposed protocol demonstrated the possibility of a straightforward synthesis of new chiral catalysts to be utilized in the asymmetric synthesis of pharmaceutically important compounds, such as amino acid derivatives.
Collapse
Affiliation(s)
- Katarzyna Szwaczko
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Barbara Miroslaw
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Oleg M. Demchuk
- Faculty of Science and Health , The John Paul II Catholic University of Lublin , 1h-Konstantynów St., 20-708 Lublin , Poland
- SBŁ-Pharmaceutical Research Institute , 8-Rydygiera St., 01-793 Warsaw , Poland
| | - Grzegorz Wójciuk
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Liliana Mazur
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Kazimierz Michał Pietrusiewicz
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| |
Collapse
|
18
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
19
|
Fourel I, Benoit E, Lattard V. Enantiomeric fraction evaluation of the four stereoisomers of difethialone in biological matrices of rat by two enantioselective liquid chromatography tandem mass spectrometry methods: Chiral stationary phase or derivatization. J Chromatogr A 2020; 1618:460848. [PMID: 31932088 DOI: 10.1016/j.chroma.2019.460848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
The need for the control of rodent populations with anticoagulant rodenticides remains actual, and enantioselective analytical methods are mandatory to understand ecotoxicity issues of those chiral pesticides. This study presents two enantioselective methods to achieve the residue levels and differentiated persistence of the four stereoisomers of difethialone (called in this work E1-trans, E2-cis, E3-cis and E4-trans), which is one of the most toxic second generation anticoagulant rodenticide. Their enantiomeric fraction evaluation in biological matrices of rats was determined by two LC-MS/MS methods. The first one (chiral-LC-MS/MS) combined a chiral column employed in reversed-phase mode (with acetonitrile-water mobile phase) to be compatible with mass spectrometry detection. The second one was also a LC-MS/MS method but with a reversed phase column after a derivatization step with (1S)-(-)-camphanic chloride. Extraction process combined Solid-Liquid extraction and sorbent cartridges. The methods were fully validated. The chiral column was chosen as a reference method for our laboratory because it was quicker and cheaper, and enantioresolution and sensitivity were better. This chiral-LC-MS/MS method was used to measure the enantiomeric fraction of the four stereoisomers of difethialone in rodent biological matrices (liver, plasma, blood and feces) of female rats treated with 3.5 mg/kg of difethialone. The results showed that metabolism is not the same for all the stereoisomers: cis-E3-difethialone was the most persistent, and E4-trans-difethialone was the most quickly eliminated. This chiral-LC-MS/MS method will be used to study the pharmacokinetics of the four stereoisomers of difethialone, and for ecotoxicological surveillance to evaluate the specific persistence of each stereoisomer of difethialone in case of secondary exposure of wildlife non-target species.
Collapse
Affiliation(s)
- Isabelle Fourel
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280 Marcy l'Etoile, France.
| | - Etienne Benoit
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280 Marcy l'Etoile, France
| |
Collapse
|
20
|
Ribeiro ARL, Maia AS, Ribeiro C, Tiritan ME. Analysis of chiral drugs in environmental matrices: Current knowledge and trends in environmental, biodegradation and forensic fields. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115783] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Wan L, Wade J, Salerno F, Arteaga O, Laidlaw B, Wang X, Penfold T, Fuchter MJ, Campbell AJ. Inverting the Handedness of Circularly Polarized Luminescence from Light-Emitting Polymers Using Film Thickness. ACS NANO 2019; 13:8099-8105. [PMID: 31241299 DOI: 10.1021/acsnano.9b02940] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The emission of circularly polarized light is central to many applications, including data storage, optical quantum computation, biosensing, environmental monitoring, and display technologies. An emerging method to induce (chiral) circularly polarized (CP) electroluminescence from the active layer of polymer light-emitting diodes (polymer OLEDs; PLEDs) involves blending achiral polymers with chiral small-molecule additives, where the handedness/sign of the CP light is controlled by the absolute stereochemistry of the small molecule. Through the in-depth study of such a system we report an interesting chiroptical property: the ability to tune the sign of CP light as a function of active layer thickness for a fixed enantiomer of the chiral additive. We demonstrate that it is possible to achieve both efficient (4.0 cd/A) and bright (8000 cd/m2) CP-PLEDs, with high dissymmetry of emission of both left-handed (LH) and right-handed (RH) light, depending on thickness (thin films, 110 nm: gEL = 0.51, thick films, 160 nm: gEL = -1.05, with the terms "thick" and "thin" representing the upper and lower limits of the thickness regime studied), for the same additive enantiomer. We propose that this arises due to an interplay between localized CP emission originating from molecular chirality and CP light amplification or inversion through a chiral medium. We link morphological, spectroscopic, and electronic characterization in thin films and devices with theoretical studies in an effort to determine the factors that underpin these observations. Through the control of active layer thickness and device architecture, this study provides insights into the mechanisms that result in CP luminescence and high performance from CP-PLEDs, as well as demonstrating new opportunities in CP photonic device design.
Collapse
Affiliation(s)
- Li Wan
- Department of Physics and Centre of Plastic Electronics , Imperial College London , South Kensington Campus, London SW7 2AZ , U.K
| | - Jessica Wade
- Department of Physics and Centre of Plastic Electronics , Imperial College London , South Kensington Campus, London SW7 2AZ , U.K
| | - Francesco Salerno
- Department of Chemistry and Molecular Sciences Research Hub , Imperial College London , White City Campus, Wood Lane , London W12 OBZ , U.K
| | - Oriol Arteaga
- Departament de Física Aplicada , Universitat de Barcelona , IN2UB, Barcelona , 08028 , Spain
| | - Beth Laidlaw
- Chemistry - School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne NE1 7RU , U.K
| | - Xuhua Wang
- Department of Physics and Centre of Plastic Electronics , Imperial College London , South Kensington Campus, London SW7 2AZ , U.K
| | - Thomas Penfold
- Chemistry - School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne NE1 7RU , U.K
| | - Matthew J Fuchter
- Department of Chemistry and Molecular Sciences Research Hub , Imperial College London , White City Campus, Wood Lane , London W12 OBZ , U.K
| | - Alasdair J Campbell
- Department of Physics and Centre of Plastic Electronics , Imperial College London , South Kensington Campus, London SW7 2AZ , U.K
| |
Collapse
|
22
|
Valimaña-Traverso J, Amariei G, Boltes K, García MÁ, Marina ML. Enantiomer stability and combined toxicity of duloxetine and econazole on Daphnia magna using real concentrations determined by capillary electrophoresis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:770-778. [PMID: 30921710 DOI: 10.1016/j.scitotenv.2019.03.208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Enantiomer stability was investigated in this work for the first time for duloxetine and econazole in individual solutions and their mixtures under the standardized ecotoxicity test experimental conditions for Daphnia magna and abiotic conditions. Real (and not nominal) enantiomer concentrations were employed for calculations since their determination was achieved by Capillary Electrophoresis. Relevant differences were found in stability profiles for both drugs in any case. Toxicity was evaluated for the first time in this work for mixtures of duloxetine and econazole on Daphnia magna. Dose-effect parameters were calculated at different exposure times (24, 48, and 72 h) showing a significant inhibition of daphnids mobility when increasing the incubation time. Combination index values enabled to obtain the type and level of interaction of drugs with the organism. A strong synergism was observed at 48 h exposure time and any effect level, which demonstrated the high toxicity of the drug mixture compared with the individual drug solutions. These results were corroborated when evaluating the oxidative stress using fluorescence images.
Collapse
Affiliation(s)
- Jesús Valimaña-Traverso
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Georgiana Amariei
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Karina Boltes
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805 Alcalá de Henares, Madrid, Spain
| | - Maria Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Maria Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
23
|
Camacho-Muñoz D, Petrie B, Lopardo L, Proctor K, Rice J, Youdan J, Barden R, Kasprzyk-Hordern B. Stereoisomeric profiling of chiral pharmaceutically active compounds in wastewaters and the receiving environment - A catchment-scale and a laboratory study. ENVIRONMENT INTERNATIONAL 2019; 127:558-572. [PMID: 30981914 DOI: 10.1016/j.envint.2019.03.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/03/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Chiral pharmaceutically active compounds (cPACs) are not currently governed by environmental regulation yet are expected to be in the future. As cPACs can exert stereospecific toxicity in the aquatic environment, it is essential to better understand their stereoselective behaviour here. Therefore, this study aims to provide a new perspective towards comprehensive evaluation of cPACs at a river catchment level, including their stereochemistry as a chemical phenomenon driving fate of chiral molecules in the environment. A large spatial and temporal monitoring program was performed in Southwest England. It included 5 sewage treatment works and the receiving waters of the largest river catchment in Southwest England. Simultaneously, lab-scale microcosm studies in simulated activated sludge bioreactors and river water microcosm were performed to evaluate stereoselective degradation of cPACs. A multi-residue enantioselective method allowed the analysis of a total of 18 pairs of enantiomers and 3 single enantiomers in wastewater and river water samples. Our monitoring program revealed: (1) spatial and temporal variations of cPACs in influent wastewaters resulting from different patterns of usage as well as an (2) enantiomeric enrichment of cPACs, likely due to human metabolism, despite their commercialization as racemic mixtures. A similar chiral signature was observed in effluent and receiving waters. Stereoselective degradation was observed in trickling filters (TF) for naproxen, ketoprofen, cetirizine and 10,11-dihydroxy-10-hydroxycarbamazepine, in sequencing batch reactors (SBR) for ifosfamide and in activated sludge (AS) for cetirizine. The extent of enantiomer-specific fate was wastewater treatment dependent in the case of naproxen (TF showed higher stereoselectivity than AS and SBR) and cetirizine (TF and AS showed higher stereoselectivity than SBR) due to differing microbial population. Furthermore, stereoselective degradation of naproxen was highly variable among STWs using similar treatments (TF) and operating in the same region. Microbial stereoselective degradation was also confirmed by both activated and river water simulated microcosm for chloramphenicol, ketoprofen, indoprofen, naproxen and 10,11-dihydroxy-10-hydroxycarbamazepine. Results from our large scale river catchment monitoring study and lab simulated microcosm show wide-ranging implications of enantiomerism of cPACs on environmental risk assessment (ERA). As two enantiomers of the same compound show different biological effects (e.g. toxicity), their non-racemic presence in the environment might lead to inaccurate ERA. This is because current ERA approaches do not require analysis at enantiomeric level.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Manchester Pharmacy School, The University of Manchester, Manchester M13 9PT, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | - Bruce Petrie
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Luigi Lopardo
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | - Jack Rice
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK
| | | | | | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
24
|
Dual enantioselective LC–MS/MS method to analyse chiral drugs in surface water: Monitoring in Douro River estuary. J Pharm Biomed Anal 2019; 170:89-101. [DOI: 10.1016/j.jpba.2019.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
|
25
|
Wu S, Zhou H, Luo L, Zhou Y. Response to comment on "Chiral pharmaceuticals: Environment sources, potential human health impacts, remediation technologies and future perspective". ENVIRONMENT INTERNATIONAL 2019; 127:1-4. [PMID: 30889397 DOI: 10.1016/j.envint.2019.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Shikang Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
26
|
Zhang W, Cheng C, Chen L, Deng Y, Zhang L, Li Y, Qin Y, Diao J, Zhou Z. Enantioselective toxic effects of cyproconazole enantiomers against Rana nigromaculata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1825-1832. [PMID: 30408870 DOI: 10.1016/j.envpol.2018.09.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
The environmental contaminant, especially pesticides, threatened the amphibian population. In this assay, the enantioselective behavior of cyproconazole on Rana nigromaculata was studied. We found LC50 (lethal concentration causing 50% mortality) of 4-enantiomers was nearly twice as 3-enantiomers in 96 h acute toxicity test. Besides, the significant considerable variation of oxidative stress and LDH (lactic dehydrogenase) induced by the four enantiomers indicated that cyproconazole could enantioselectively affect enzymes in tadpoles. Bioaccumulation experiments showed the order of cyproconazole in the tadpoles was 4-enantiomers>3- enantiomers>2- enantiomers>1- enantiomers during the exposure for 28d. In tissue distribution test, cyproconazole was formed and accumulated in order of 4-enantiomers>2-enantiomers>3- enantiomers>1- enantiomers, except that in the gut. During the elimination experiment, cyproconazole was rapidly eliminated by 95% within the only 24 h. These results suggested that the influence of enantioselective behavior should consider when assessing ecological risk of chiral pesticides to amphibians.
Collapse
Affiliation(s)
- Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Cheng Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yao Li
- College of Resources and Environment, Henan Agricultural University, Wenhua Road 95, ZhengZhou, Henan, 450002, China
| | - Yinan Qin
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
27
|
Masbou J, Drouin G, Payraudeau S, Imfeld G. Carbon and nitrogen stable isotope fractionation during abiotic hydrolysis of pesticides. CHEMOSPHERE 2018; 213:368-376. [PMID: 30241081 DOI: 10.1016/j.chemosphere.2018.09.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 05/24/2023]
Abstract
Compound-specific Stable Isotope Analysis (CSIA) has been recently established as a tool to study pesticide degradation in the environment. Among degradative processes, hydrolysis is environmentally relevant as it can be chemically or enzymatically mediated. Here, CSIA was used to examine stable carbon and nitrogen isotope fractionation during abiotic hydrolysis of legacy or currently used pesticides (chloroacetanilide herbicides: Acetochlor, Alachlor, S-Metolachlor and Butachlor, acylalanine fungicide: Metalaxyl, and triazine herbicide: Atrazine). Degradation products analysis and CN dual-CSIA allowed to infer hydrolytic degradation pathways from carbon and nitrogen isotopic fractionation. Carbon isotopic fractionation for alkaline hydrolysis revealed similar apparent kinetic isotope effects (AKIEC = 1.03-1.07) for the 6 pesticides, which were consistent with SN2 type nucleophilic substitutions. Neither enantio-selectivity (EF ≈ 0.5) nor enantio-specific isotope fractionation occurred during hydrolysis of R (AKIEC = 1.04 ± 0.01) and S (AKIEC = 1.04 ± 0.02) enantiomers of a racemic mixture of Metalaxyl. Dual element isotope plots enabled to tease apart CCl bond breaking of alkane (Λ ≈ εN/εC ≈ 0, Acetochlor, Butachlor) and aromatic π-system (Λ ≈ 0.2, Atrazine) from CO bond breaking by dealkylation (Λ ≈ 0.9, Metalaxyl). Reference values for abiotic versus biotic SN2 reactions derived from carbon and nitrogen CSIA may be used to untangle pesticide degradation pathways and evaluate in situ degradation during natural and engineered remediation.
Collapse
Affiliation(s)
- Jérémy Masbou
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/ENGEES, CNRS, 1 rue Blessig, 67084, Strasbourg Cedex, France
| | - Guillaume Drouin
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/ENGEES, CNRS, 1 rue Blessig, 67084, Strasbourg Cedex, France
| | - Sylvain Payraudeau
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/ENGEES, CNRS, 1 rue Blessig, 67084, Strasbourg Cedex, France
| | - Gwenaël Imfeld
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/ENGEES, CNRS, 1 rue Blessig, 67084, Strasbourg Cedex, France.
| |
Collapse
|
28
|
Tiritan ME, Fernandes C, Maia AS, Pinto M, Cass QB. Enantiomeric ratios: Why so many notations? J Chromatogr A 2018; 1569:1-7. [PMID: 30025608 DOI: 10.1016/j.chroma.2018.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
The correct quantification of enantiomers is pivotal in a variety of fields, such as pharmacokinetic studies, enantioselective syntheses, chemical characterization of natural products, authentication of fragrance and food, biodegradation behavior, accurate evaluation of environmental risk, and it can also provide information for sentencing guidance in forensic field. Enantioselective chromatography is the first choice to assess the composition of an enantiomeric mixture. Different notations have been used to express the measured enantiomeric ratios, which compromise the results and represent a challenge for data comparison. This manuscript critically discusses the currently used notations and exemplifies with applications in different fields indicating the advantages and disadvantages of one of the adopted systems. In order to simplify the notations, the use of enantiomeric ratio (e.r.%) as standardization for nonchiroptical methods is proposed.
Collapse
Affiliation(s)
- Maria E Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal
| | - Alexandra S Maia
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal
| | - Quezia B Cass
- SEPARARE, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, 13565-905, SP, Brazil.
| |
Collapse
|
29
|
Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review. Symmetry (Basel) 2017. [DOI: 10.3390/sym9100215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|