• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4631400)   Today's Articles (1717)   Subscriber (49851)
For: Palazzi E, Luzi L, Dimo E, Calanca A. An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications. Technologies 2022;10:22. [DOI: 10.3390/technologies10010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Number Cited by Other Article(s)
1
Okunola A, Afolabi A, Akanmu A, Jebelli H, Simikins S. Facilitators and barriers to the adoption of active back-support exoskeletons in the construction industry. JOURNAL OF SAFETY RESEARCH 2024;90:402-415. [PMID: 39251296 DOI: 10.1016/j.jsr.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 09/11/2024]
2
Sosa Méndez D, García Cena CE, Bedolla-Martínez D, Martín González A. Innovative Metaheuristic Optimization Approach with a Bi-Triad for Rehabilitation Exoskeletons. SENSORS (BASEL, SWITZERLAND) 2024;24:2231. [PMID: 38610443 PMCID: PMC11014224 DOI: 10.3390/s24072231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
3
Falkowski P, Jeznach K. Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor. J Neuroeng Rehabil 2024;21:22. [PMID: 38342919 PMCID: PMC10860295 DOI: 10.1186/s12984-024-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]  Open
4
Manzano M, Guegan S, Le Breton R, Devigne L, Babel M. Model-Based Upper-Limb Gravity Compensation Strategies for Active Dynamic Arm Supports. IEEE Int Conf Rehabil Robot 2023;2023:1-6. [PMID: 37941294 DOI: 10.1109/icorr58425.2023.10304711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
5
Delgado P, Yihun Y. Integration of Task-Based Exoskeleton with an Assist-as-Needed Algorithm for Patient-Centered Elbow Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2023;23:s23052460. [PMID: 36904662 PMCID: PMC10006945 DOI: 10.3390/s23052460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 05/14/2023]
6
The Middleware for an Exoskeleton Assisting Upper Limb Movement. SENSORS 2022;22:s22082986. [PMID: 35458977 PMCID: PMC9032928 DOI: 10.3390/s22082986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA