1
|
Xing Z, Zogona D, Wu T, Pan S, Xu X. Applications, challenges and prospects of bionic nose in rapid perception of volatile organic compounds of food. Food Chem 2023; 415:135650. [PMID: 36868065 DOI: 10.1016/j.foodchem.2023.135650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Bionic nose, a technology that mimics the human olfactory system, has been widely used to assess food quality due to their high sensitivity, low cost, portability and simplicity. This review briefly describes that bionic noses with multiple transduction mechanisms are developed based on gas molecules' physical properties: electrical conductivity, visible optical absorption, and mass sensing. To enhance their superior sensing performance and meet the growing demand for applications, a range of strategies have been developed, such as peripheral substitutions, molecular backbones, and ligand metals that can finely tune the properties of sensitive materials. In addition, challenges and prospects coexist are covered. Cross-selective receptors of bionic nose will help and guide the selection of the best array for a particular application scenario. It provides an odour-based monitoring tool for rapid, reliable and online assessment of food safety and quality.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China.
| |
Collapse
|
2
|
Nazir N, Abbas S, Nasir H, Hussain I. Electrochemical sensing of limonene using thiol capped gold nanoparticles and its detection in the real breath sample of a cirrhotic patient. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Ivaskovic P, Ainseba B, Nicolas Y, Toupance T, Tardy P, Thiéry D. Sensing of Airborne Infochemicals for Green Pest Management: What Is the Challenge? ACS Sens 2021; 6:3824-3840. [PMID: 34704740 DOI: 10.1021/acssensors.1c00917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the biggest global challenges for our societies is to provide natural resources to the rapidly expanding population while maintaining sustainable and ecologically friendly products. The increasing public concern about toxic insecticides has resulted in the rapid development of alternative techniques based on natural infochemicals (ICs). ICs (e.g., pheromones, allelochemicals, volatile organic compounds) are secondary metabolites produced by plants and animals and used as information vectors governing their interactions. Such chemical language is the primary focus of chemical ecology, where behavior-modifying chemicals are used as tools for green pest management. The success of ecological programs highly depends on several factors, including the amount of ICs that enclose the crop, the range of their diffusion, and the uniformity of their application, which makes precise detection and quantification of ICs essential for efficient and profitable pest control. However, the sensing of such molecules remains challenging, and the number of devices able to detect ICs in air is so far limited. In this review, we will present the advances in sensing of ICs including biochemical sensors mimicking the olfactory system, chemical sensors, and sensor arrays (e-noses). We will also present several mathematical models used in integrated pest management to describe how ICs diffuse in the ambient air and how the structure of the odor plume affects the pest dynamics.
Collapse
Affiliation(s)
- Petra Ivaskovic
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Bedr’Eddine Ainseba
- UMR 5251, Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33405 Talence, France
| | - Yohann Nicolas
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Thierry Toupance
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Pascal Tardy
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Denis Thiéry
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
| |
Collapse
|
4
|
Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Volatile organic compounds (VOCs) that evaporate under standard atmospheric conditions are of growing concern. This is because it is well established that VOCs represent major contamination risks since release of these compounds into the atmosphere can contribute to global warming, and thus, can also be detrimental to the overall health of worldwide populations including plants, animals, and humans. Consequently, the detection, discrimination, and quantification of VOCs have become highly relevant areas of research over the past few decades. One method that has been and continues to be creatively developed for analyses of VOCs is the Quartz Crystal Microbalance (QCM). In this review, we summarize and analyze applications of QCM devices for the development of sensor arrays aimed at the detection of environmentally relevant VOCs. Herein, we also summarize applications of a variety of coatings, e.g., polymers, macrocycles, and ionic liquids that have been used and reported in the literature for surface modification in order to enhance sensing and selective detection of VOCs using quartz crystal resonators (QCRs) and thus QCM. In this review, we also summarize novel electronic systems that have been developed for improved QCM measurements.
Collapse
|
5
|
Liu K, Zhang C. Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review. Food Chem 2020; 334:127615. [PMID: 32711261 DOI: 10.1016/j.foodchem.2020.127615] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
In this review article, the state of the art of gas sensors based on quartz crystal microbalance (QCM) for fruit freshness detection is overviewed from the aspects of development history, working principle, selection and modification of sensitive materials, and volatile organic compounds detection of fruits. According to the characteristics of respiratory intensity at the stage of fruit ripening, fruits can be divided into respiration climacteric fruits and non-climacteric fruits. In recent years, research has mainly focused on respiration climacteric fruits, such as bananas and mangoes, etc., while related studies on non-climacteric fruits have been rarely reported, except for citrus fruits. The preparation methods and structure design of sensitive materials based on physical/chemical adsorption mechanisms are further discussed according to the odor components that affect the freshness of fruits, namely alkenes, esters, aldehydes and alcohols.
Collapse
Affiliation(s)
- Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|