1
|
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J Clin Med 2024; 13:6352. [PMID: 39518492 PMCID: PMC11545949 DOI: 10.3390/jcm13216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary artery calcification (CAC) is a hallmark of atherosclerosis and a critical factor in the development and progression of coronary artery disease (CAD). This review aims to address the complex pathophysiological mechanisms underlying CAC and its relationship with CAD. We examine the cellular and molecular processes that drive the formation of calcified plaques, highlighting the roles of inflammation, lipid accumulation, and smooth muscle cell proliferation. Additionally, we explore the genetic and environmental factors that contribute to the heterogeneity in CAC and CAD presentation among individuals. Understanding these intricate mechanisms is essential for developing targeted therapeutic strategies and improving diagnostic accuracy. By integrating current research findings, this review provides a comprehensive overview of the pathways linking CAC to CAD, offering insights into potential interventions to mitigate the burden of these interrelated conditions.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Evi Christodoulou
- Cardiology Department, Limassol General Hospital, State Health Services Organization, Limassol 3304, Cyprus;
| | - Kimon Myrianthopoulos
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
2
|
Caobelli F, Dweck MR, Albano D, Gheysens O, Georgoulias P, Nekolla S, Lairez O, Leccisotti L, Lubberink M, Massalha S, Nappi C, Rischpler C, Saraste A, Hyafil F. Hybrid cardiovascular imaging. A clinical consensus statement of the european association of nuclear medicine (EANM) and the european association of cardiovascular imaging (EACVI) of the ESC. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06946-w. [PMID: 39436435 DOI: 10.1007/s00259-024-06946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024]
Abstract
Hybrid imaging consists of a combination of two or more imaging modalities, which equally contribute to image information. To date, hybrid cardiovascular imaging can be performed by either merging images acquired on different scanners, or with truly hybrid PET/CT and PET/MR scanners. The European Association of Nuclear Medicine (EANM), and the European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology (ESC) aim to review clinical situations that may benefit from the use of hybrid cardiac imaging and provide advice on acquisition protocols providing the most relevant information to reach diagnosis in various clinical situations.
Collapse
Affiliation(s)
- Federico Caobelli
- Department of Nuclear Medicine, University Hospital Bern, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Marc R Dweck
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Domenico Albano
- Department of Nuclear Medicine, University of Brescia, Brescia, Italy
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Stephan Nekolla
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Olivier Lairez
- National Institute of Health and Medical Research (INSERM), I2MC, U1297, Toulouse, France
| | - Lucia Leccisotti
- Department of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marc Lubberink
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
| | | | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | | | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Fabien Hyafil
- Department of Nuclear Medicine, AP-HP, European Hospital Georges-Pompidou, University of Paris-Cité, 75015, Paris, France
| |
Collapse
|
3
|
Kennedy JA, Palchan-Hazan T, Maronnier Q, Caselles O, Courbon F, Levy M, Keidar Z. An extended bore length solid-state digital-BGO PET/CT system: design, preliminary experience, and performance characteristics. Eur J Nucl Med Mol Imaging 2024; 51:954-964. [PMID: 38012446 DOI: 10.1007/s00259-023-06514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE A solid-state PET/CT system uses bismuth germanium oxide (BGO) scintillating crystals coupled to silicon photomultipliers over an extended 32 cm axial field-of-view (FOV) to provide high spatial resolution and very high sensitivity. Performance characteristics were determined for this digital-BGO system, including NEMA and EARL standards. METHODS Spatial resolution, scatter fraction (SF), noise equivalent count rate (NECR), sensitivity, count rate accuracy, and image quality (IQ) were evaluated for the digital-BGO system as per NEMA NU 2-2018, at 2 sites of first clinical install. System energy resolution was measured. Bayesian penalized-likelihood reconstruction (BPL) was used for IQ. EARL Standards 2 studies were reconstructed by BPL combined with a contrast-enhancing deep learning algorithm. An Esser PET phantom was evaluated. Three patient examples were obtained with low-dose radiotracer activity: 2 MBq/kg of [18F]FDG ([18F]-2-fluoro-2-deoxy-D-glucose), 2.3 MBq/kg [68Ga]Ga-DOTA-TATE ([dodecane tetra-acetic acid,Tyr3]-octreotate), and 14.5 MBq/kg [82Rb]RbCl ([82Rb]-rubidium-chloride). Total scan times were ≤ 8 min. RESULTS NEMA sensitivity was 47.6 cps/kBq at the axial center. Spatial resolution at 1 cm from the center axis was ≤4.5 mm (filtered back projection) and ≤3.8 mm (ordered subset expectation maximization). SF was 35.6%, count rate accuracy was 2.16%, and peak NECR was 485.2 kcps at 16.9 kBq/mL. Contrast for IQ was 61.1 to 90.7% (smallest to largest sphere) with background variations from 7.6 to 2.1%, and a "lung" error of 4.7%. The average detector energy resolution was 9.67%. Image quality for patient scans was good. EARL Standards 2 criteria were robustly met and Esser phantom features ≥4.8 mm were resolved at 2 min per bed position. CONCLUSION A solid-state 32 cm axial FOV digital-BGO PET/CT system provides good spatial and energy resolution, high count rates, and superior NEMA sensitivity in its class, enabling fast clinical acquisitions with low-dose radiotracer activity.
Collapse
Affiliation(s)
- John A Kennedy
- Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel.
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Tala Palchan-Hazan
- Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel
| | - Quentin Maronnier
- Medical Imaging Department, Oncopole Claudius Regaud, Toulouse, France
| | - Olivier Caselles
- Medical Imaging Department, Oncopole Claudius Regaud, Toulouse, France
| | - Frédéric Courbon
- Medical Imaging Department, Oncopole Claudius Regaud, Toulouse, France
| | - Moshe Levy
- GE Healthcare, Tirat HaCarmel, Tirat HaCarmel, Israel
| | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Guimarães J, de Almeida J, Mendes PL, Ferreira MJ, Gonçalves L. Advancements in non-invasive imaging of atherosclerosis: Future perspectives. J Clin Lipidol 2024; 18:e142-e152. [PMID: 38142178 DOI: 10.1016/j.jacl.2023.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the buildup of plaques in arterial walls, leading to cardiovascular diseases and high morbidity and mortality rates worldwide. Non-invasive imaging techniques play a crucial role in evaluating patients with suspected or established atherosclerosis. However, there is a growing body of evidence suggesting the need to visualize the underlying processes of plaque progression and rupture to enhance risk stratification. This review explores recent advancements in non-invasive assessment of atherosclerosis, focusing on computed tomography, magnetic resonance imaging, and nuclear imaging. These advancements provide valuable insights into the assessment and management of atherosclerosis, potentially leading to better risk stratification and improved patient outcomes.
Collapse
Affiliation(s)
- Joana Guimarães
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal.
| | - José de Almeida
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Paulo Lázaro Mendes
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Maria João Ferreira
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Xi H, Jing M, Sun Q, Wang Y, Zhu H, Zhou J. The relationship between different exercise conditions and pericoronary inflammation as quantified by coronary CTA in coronary artery disease. Heliyon 2024; 10:e25316. [PMID: 38352755 PMCID: PMC10861983 DOI: 10.1016/j.heliyon.2024.e25316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Objectives The correlation between exercise type and intensity and coronary artery inflammation in patients with stable coronary artery disease (CAD) is unknown. Therefore, this study assessed the relationship between coronary inflammation quantified by coronary computed tomography angiography (CCTA) and exercise intensity and pattern in patients with CAD. Materials and methods Patients who underwent CCTA between 2019 and 2023 in the second hospital of Lanzhou University were retrospectively examined. We calculated the pericoronary fat attenuation index (FAI) on the right coronary artery (RCA) as a marker of coronary inflammation. We compared basic information, exercise status, and RCA-FAI values between the two groups, and described the relationship between different exercise durations and RCA-FAI using analysis of variance and restricted cubic splines. Results In total, 1222 patients were included: 774 had no CAD and 448 patients had CAD. Sex (P = 0.016; odds ratio [OR]: 0.673), high-density lipoprotein (P = 0.006; OR: 0.601), low-density lipoprotein (P = 0.001; OR. 0.762), hypertension (P = 0.000; OR: 0.762), smoking (P = 0.005; OR: 0.670), and postprandial glucose (P = 0.030; OR: 0.812), household income (P = 0.038; OR:1.117), and body mass index (P = 0.000; OR:1.084) were the risk factors for elevated RCA-FAI values in the patients with coronary artery disease group. And when the exercise modality was running and aerobics, the correlation between RCA-FAI values and exercise time showed a "U"-shaped relationship. Follow-up revealed that short periods of high-intensity exercise resulted in lower RCA-FAI values. Conclusion RCA-FAI was significantly associated with coronary artery inflammation. Although appropriate physical activity reduced the risk of pericoronary inflammation and coronary atherosclerosis, overly prolonged exercise could exacerbate the coronary inflammatory response and increase the likelihood of CAD.
Collapse
Affiliation(s)
- Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qiu Sun
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Yuanyuan Wang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Hao Zhu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| |
Collapse
|
6
|
Tingen HSA, van Praagh GD, Nienhuis PH, Tubben A, van Rijsewijk ND, ten Hove D, Mushari NA, Martinez-Lucio TS, Mendoza-Ibañez OI, van Sluis J, Tsoumpas C, Glaudemans AW, Slart RH. The clinical value of quantitative cardiovascular molecular imaging: a step towards precision medicine. Br J Radiol 2023; 96:20230704. [PMID: 37786997 PMCID: PMC10646628 DOI: 10.1259/bjr.20230704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and have an increasing impact on society. Precision medicine, in which optimal care is identified for an individual or a group of individuals rather than for the average population, might provide significant health benefits for this patient group and decrease CVD morbidity and mortality. Molecular imaging provides the opportunity to assess biological processes in individuals in addition to anatomical context provided by other imaging modalities and could prove to be essential in the implementation of precision medicine in CVD. New developments in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) systems, combined with rapid innovations in promising and specific radiopharmaceuticals, provide an impressive improvement of diagnostic accuracy and therapy evaluation. This may result in improved health outcomes in CVD patients, thereby reducing societal impact. Furthermore, recent technical advances have led to new possibilities for accurate image quantification, dynamic imaging, and quantification of radiotracer kinetics. This potentially allows for better evaluation of disease activity over time and treatment response monitoring. However, the clinical implementation of these new methods has been slow. This review describes the recent advances in molecular imaging and the clinical value of quantitative PET and SPECT in various fields in cardiovascular molecular imaging, such as atherosclerosis, myocardial perfusion and ischemia, infiltrative cardiomyopathies, systemic vascular diseases, and infectious cardiovascular diseases. Moreover, the challenges that need to be overcome to achieve clinical translation are addressed, and future directions are provided.
Collapse
Affiliation(s)
- Hendrea Sanne Aletta Tingen
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gijs D. van Praagh
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alwin Tubben
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nick D. van Rijsewijk
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Derk ten Hove
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nouf A. Mushari
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - T. Samara Martinez-Lucio
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Oscar I. Mendoza-Ibañez
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Andor W.J.M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | | |
Collapse
|
7
|
Pepe A, Crimì F, Vernuccio F, Cabrelle G, Lupi A, Zanon C, Gambato S, Perazzolo A, Quaia E. Medical Radiology: Current Progress. Diagnostics (Basel) 2023; 13:2439. [PMID: 37510183 PMCID: PMC10378672 DOI: 10.3390/diagnostics13142439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, medical radiology has undergone significant improvements in patient management due to advancements in image acquisition by the last generation of machines, data processing, and the integration of artificial intelligence. In this way, cardiovascular imaging is one of the fastest-growing radiological subspecialties. In this study, a compressive review was focused on addressing how and why CT and MR have gained a I class indication in most cardiovascular diseases, and the potential impact of tissue and functional characterization by CT photon counting, quantitative MR mapping, and 4-D flow. Regarding rectal imaging, advances in cancer imaging using diffusion-weighted MRI sequences for identifying residual disease after neoadjuvant chemoradiotherapy and [18F] FDG PET/MRI were provided for high-resolution anatomical and functional data in oncological patients. The results present a large overview of the approach to the imaging of diffuse and focal liver diseases by US elastography, contrast-enhanced US, quantitative MRI, and CT for patient risk stratification. Italy is currently riding the wave of these improvements. The development of large networks will be crucial to create high-quality databases for patient-centered precision medicine using artificial intelligence. Dedicated radiologists with specific training and a close relationship with the referring clinicians will be essential human factors.
Collapse
Affiliation(s)
- Alessia Pepe
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Filippo Crimì
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Federica Vernuccio
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Giulio Cabrelle
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Amalia Lupi
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Chiara Zanon
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Sebastiano Gambato
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Anna Perazzolo
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
- Institute of Radiology, Department of Medicine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, University of Udine, 33100 Udine, Italy
| | - Emilio Quaia
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| |
Collapse
|