1
|
Li J, Gu H, Lovko VJ, Liang C, Li X, Xu X, Jia L, Jiang M, Wang J, Chen J. The Ciliate Euplotes balteatus Exhibits Removal Capacity upon the Dinoflagellates Karenia mikimotoi and Prorocentrum shikokuense. HARMFUL ALGAE 2024; 138:102685. [PMID: 39244228 DOI: 10.1016/j.hal.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 09/09/2024]
Abstract
The significant threat posed by the ichthyotoxic dinoflagellate Karenia mikimotoi to coastal aquaculture, resulting in substantial economic losses, underscores the need for control and mitigation strategies. Bio-mitigation of algal blooms through grazers presents advantages in sustainability compared to methods relying on chemical or physical procedures. This study explored the inhibitory effect of nine Euplotes spp. (Alveolata, Ciliophora) isolates on simulated blooms, with E. balteatus W413 displaying removal capacity for K. mikimotoi and robust growth in co-cultivation. The unique size plasticity in W413 revealed an efficient predation strategy, as an increase in cellular size enables it to shift prey from bacteria to algal cells. The enlarged cell volume facilitates W413 to accommodate more algal cells, bestowing it with a high ingestion rate and removal capacity upon K. mikimotoi. Furthermore, W413 exhibited considerable inhibition towards co-occurring bloom species, specifically Prorocentrum shikokuense and Karenia spp., implying its potential to mitigate mixed-species blooms. The study enhances our understanding of the prey selectivity of Euplotes species and proposes E. balteatus as a potential bio-mitigation candidate for K. mikimotoi blooms, emphasizing the significance of micro-grazers in marine ecosystems.
Collapse
Affiliation(s)
- Jing Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Vincent J Lovko
- Mote Marine Laboratory, Fisheries Ecology and Enhancement Program, Sarasota, FL, 34236, USA
| | - Chen Liang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiaodong Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350108, China
| | - Xin Xu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Linxuan Jia
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Miaohua Jiang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jinrong Wang
- The Second Geological Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Oh JW, Pushparaj SSC, Muthu M, Gopal J. Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3936. [PMID: 38068573 PMCID: PMC10871120 DOI: 10.3390/plants12233936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/07/2023] [Accepted: 11/18/2023] [Indexed: 02/18/2024]
Abstract
Extensive growth of microscopic algae and cyanobacteria results in harmful algal blooms (HABs) in marine, brackish, and freshwater environments. HABs can harm humans and animals through their toxicity or by producing ecological conditions such as oxygen depletion, which can kill fish and other economically or ecologically important organisms. This review summarizes the reports on various HABs that are able to bring about marine fish kills. The predominant HABs, their toxins, and their effects on fishes spread across various parts of the globe are discussed. The mechanism of HAB-driven fish kills is discussed based on the available reports, and existing mitigation methods are presented. Lapses in the large-scale implementation of mitigation methods demonstrated under laboratory conditions are projected. Clay-related technologies and nano-sorption-based nanotechnologies, although proven to make significant contributions, have not been put to use in real-world conditions. The gaps in the technology transfer of the accomplished mitigation prototypes are highlighted. Further uses of remote sensing and machine learning state-of-the-art techniques for the detection and identification of HABs are recommended.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea;
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| |
Collapse
|
3
|
Shin YK, Seo DY, Eom HJ, Park M, Lee M, Choi YE, Han YS, Rhee JS, Kim YJ. Oxidative Stress and DNA Damage in Pagrus major by the Dinoflagellate Karenia mikimotoi. Toxins (Basel) 2023; 15:620. [PMID: 37888651 PMCID: PMC10611101 DOI: 10.3390/toxins15100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Karenia mikimotoi is a common species of red tide dinoflagellate that causes the mass mortality of marine fauna in coastal waters of Republic of Korea. Despite continuous studies on the ecophysiology and toxicity of K. mikimotoi, the underlying molecular mechanisms remain poorly understood. Red sea bream, Pagrus major, is a high-value aquaculture fish species, and the coastal aquaculture industry of red sea bream has been increasingly affected by red tides. To investigate the potential oxidative effects of K. mikimotoi on P. major and the molecular mechanisms involved, we exposed the fish to varying concentrations of K. mikimotoi and evaluated its toxicity. Our results showed that exposure to K. mikimotoi led to an accumulation of reactive oxygen species (ROS) and oxidative DNA damage in the gill tissue of P. major. Furthermore, we found that K. mikimotoi induced the activation of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, in the gill tissue of P. major, with a significant increase in activity at concentrations above 5000 cells/mL. However, the activity of glutathione S-transferase did not significantly increase at the equivalent concentration. Our study confirms that oxidative stress and DNA damage is induced by acute exposure to K. mikimotoi, as it produces ROS and hypoxic conditions in P. major. In addition, it was confirmed that gill and blood samples can be used as biomarkers to detect the degree of oxidative stress in fish. These findings have important implications for the aquaculture of red sea bream, particularly in the face of red tide disasters.
Collapse
Affiliation(s)
- Yun Kyung Shin
- National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Do Yeon Seo
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22012, Republic of Korea
| | - Hye-Jin Eom
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
| | - Mira Park
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea;
| | - Minji Lee
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea;
| | - Young-Eun Choi
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Eco Sustainable Solution Center Korea Conformity Laboratories, Incheon 40684, Republic of Korea
| | - Young-Seok Han
- Neo Environmental Business Co., Bucheon 14523, Republic of Korea;
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea;
- Yellow Sea Research Institute, Incheon 22012, Republic of Korea
| | - Youn-Jung Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; (D.Y.S.); (H.-J.E.); (Y.-E.C.)
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea;
- Yellow Sea Research Institute, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Devillier VM, Hall ER, Anderson DM, Lewis KA. Exposure of blue crab (Callinectes sapidus) to modified clay treatment of Karenia brevis as a bloom control strategy. HARMFUL ALGAE 2023; 128:102492. [PMID: 37714578 DOI: 10.1016/j.hal.2023.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Harmful algal blooms (HABs) of the toxic marine dinoflagellate Karenia brevis, commonly called red tides, are an ongoing threat to human health and marine ecosystems in Florida. Clay flocculation is a standard control strategy for marine HABs in China and Korea and is currently being assessed for use in the United States. We evaluated the effects of a PAC-modified clay called Modified Clay II on mortality, eyestalk reflexes, and righting reflexes of 48 adult blue crabs (Callinectes sapidus). Crabs were exposed to clay alone (0.5 g L - 1), untreated K. brevis (1 × 106 cells L - 1), or a combination of K. brevis and clay for eight days. Clay treatment reduced cell concentrations in the water column by 95% after 24 h. We detected no significant differences in mortality, righting reflexes, or eyestalk reflexes between treatments. Our results indicate that the clay alone is not harmful to adult crabs at typical treatment concentrations within the measured time frame, and that treatment of K. brevis with this clay appears to have a negligible impact on crab mortality and the reflex variables we measured. These results suggest that Modified Clay II may be a viable option to treat K. brevis blooms without impacting adult blue crab populations. Additional controlled experiments and field tests are needed to further evaluate the impact of clay on natural benthic communities.
Collapse
Affiliation(s)
- Victoria M Devillier
- University of Central Florida, National Center for Integrated Coastal Research, Orlando, FL, USA
| | - Emily R Hall
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Donald M Anderson
- Woods Hole Oceanographic Institution, MS # 32, Woods Hole, MA 02543, USA
| | - Kristy A Lewis
- University of Central Florida, National Center for Integrated Coastal Research, Orlando, FL, USA.
| |
Collapse
|
5
|
Chen H, Wang J, Zhuang Y, Yu W, Liu G. Reduced Fitness and Elevated Oxidative Stress in the Marine Copepod Tigriopus japonicus Exposed to the Toxic Dinoflagellate Karenia mikimotoi. Antioxidants (Basel) 2022; 11:2299. [PMID: 36421485 PMCID: PMC9687495 DOI: 10.3390/antiox11112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Blooms of the toxic dinoflagellate Karenia mikimotoi cause devastation to marine life, including declines of fitness and population recruitment. However, little is known about the effects of them on benthic copepods. Here, we assessed the acute and chronic effects of K. mikimotoi on the marine benthic copepod Tigriopus japonicus. Results showed that adult females maintained high survival (>85%) throughout 14-d incubation, but time-dependent reduction of survival was detected in the highest K. mikimotoi concentration, and nauplii and copepodites were more vulnerable compared to adults. Ingestion of K. mikimotoi depressed the grazing of copepods but significantly induced the generation of reactive oxygen species (ROS), total antioxidant capacity, activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and acetylcholinesterase. Under sublethal concentrations for two generations, K. mikimotoi reduced the fitness of copepods by prolonging development time and decreasing successful development rate, egg production, and the number of clutches. Our findings suggest that the bloom of K. mikimotoi may threaten copepod population recruitment, and its adverse effects are associated with oxidative stress.
Collapse
Affiliation(s)
- Hongju Chen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jing Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yunyun Zhuang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenzhuo Yu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guangxing Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|