1
|
Ullah MH, Rahman MJ. Adsorptive removal of toxic heavy metals from wastewater using water hyacinth and its biochar: A review. Heliyon 2024; 10:e36869. [PMID: 39281482 PMCID: PMC11400981 DOI: 10.1016/j.heliyon.2024.e36869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Heavy metal contamination in aquatic ecosystems worsens due to rapid industrial expansion. Biochar, an efficient and economical adsorbent, has attracted much interest in environmental science, particularly in removing heavy metals (HMs). The paper covers basic details on biochar, its preparation, and potential chemical and inorganic modifications. Possible adsorption mechanisms of HMs on biochar, which include electrostatic attraction, ion exchange, surface complexation, chemical precipitation, and hydrogen bonding, are also discussed. These mechanisms are affected by the type of biochar used and the species of HMs present. Research findings suggest that while biochar effectively removes HMs, modifications to the carbon-rich hybrid can enhance surface properties such as surface area, pore size, functional groups, etc., and magnetic properties in a few cases, making them more efficient in HM removal. The choice of feedstock materials is one of the key parameters influencing the sorption capacity of biochars. This review aims to investigate the use of various forms of water hyacinth (WH), including aquatic plants, biomass, biochar, and modified biochar, as effective adsorbents for removing HMs from aqueous solutions and industrial effluents through a comparative analysis of their adsorption processes. However, further studies on the diverse effects of functional groups of modified biochar on HMs adsorption are necessary for future research.
Collapse
Affiliation(s)
- M Hedayet Ullah
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Mohammad Jellur Rahman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Hamid Y, Chen Y, Lin Q, Haris M, Usman M, Saqib Rashid M, Anastopoulos I, Hussain B, Ali HM, Hannan F, Yin X, Yang X. Functionality of wheat straw-derived biochar enhanced its efficiency for actively capping Cd and Pb in contaminated water and soil matrices: Insights through batch adsorption and flow-through experiments. CHEMOSPHERE 2024; 362:142770. [PMID: 38969230 DOI: 10.1016/j.chemosphere.2024.142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.84 and 111.24 mg g-1), regeneration ability (removal efficiency 94.32 and 92.365), and competitive ability under competing cations (83.15 and 84.36%) compared to other materials (WSBC and Mg-WSBC). The practical feasibility of Fe-WSBC for spiked river water verified the 92.57% removal of Cd and 85.73% for Pb in 50 mg L-1 and 100 mg L-1 contamination, respectively. Besides, the leaching of Cd and Pb with Fe-WSBC under flow-through conditions was lowered to (0.326 and 17.62 mg L-1), respectively as compared to control (CK) (0.836 and 40.40 mg L-1). In short, this study presents the applicable approach for simultaneous remediation of contaminated water and soil matrices, offering insights into environmentally friendly green remediation strategies for heavy metals co-contaminated matrices.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100, Arta, Greece
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Village Construction Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou, 324002, China.
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Correa-Abril J, Stahl U, Cabrera EV, Parra YJ, Vega MA, Taamalli S, Louis F, Rodríguez-Díaz JM. Adsorption dynamics of Cd 2+(aq) on microwave-synthetized pristine biochar from cocoa pod husk: Green, experimental, and DFT approaches. iScience 2024; 27:109958. [PMID: 38840843 PMCID: PMC11152673 DOI: 10.1016/j.isci.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Biochar obtained via microwave-assisted pyrolysis (MAP) at 720 W and 15 min from cocoa pod husk (CPH) is an efficient adsorbent of Cd2+(aq). Biochar of residual biomass of CPH (BCCPH) possesses favorable physicochemical and morphological properties, featuring a modest surface area yet a suitable porous structure. Adsorption, predominantly governed by physisorption, is influenced by the oxygen-containing active sites (-COOR, -C(R)O, and -CH2OR; R = H, alkyl). CdCO3 formation occurs during adsorption. Experimental data were well-fitted into various kinetic models for a broad understanding of the sorption process. Langmuir model indicates a maximum adsorption capacity of 14.694 mg/g. The thermodynamic study confirms the spontaneous and endothermic sorption. Studies at the molecular level have revealed that the Cd2+ ion tends to bind to surface aromatic carbon atoms. This sustainable approach produces BCCPH via MAP as a solution for waste transformation into water-cleaning materials.
Collapse
Affiliation(s)
- Jhonny Correa-Abril
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
- Facultad de Posgrado, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Manabí 130104, Ecuador
| | - Ullrich Stahl
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
| | - Elvia V. Cabrera
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
| | - Yonathan J. Parra
- Universidad Central del Ecuador, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Jerónimo Leyton y Gilberto Gatto Sobral, Quito, Pichincha 170521, Ecuador
| | - Michael A. Vega
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
- Universidad Central del Ecuador, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Jerónimo Leyton y Gilberto Gatto Sobral, Quito, Pichincha 170521, Ecuador
| | - Sonia Taamalli
- Université de Lille, CNRS, UMR 8522, PhysicoChimie des Processus de Combustion et de l’Atmosphère – PC2A, 59000 Lille, France
| | - Florent Louis
- Université de Lille, CNRS, UMR 8522, PhysicoChimie des Processus de Combustion et de l’Atmosphère – PC2A, 59000 Lille, France
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Manabí 130104, Ecuador
| |
Collapse
|
4
|
Ahmed MJ, Anastopoulos I, Kalderis D, Haris M, Usman M. Insight into the wheat residues-derived adsorbents for the remediation of organic and inorganic aquatic contaminants: A review. ENVIRONMENTAL RESEARCH 2024; 250:118507. [PMID: 38387498 DOI: 10.1016/j.envres.2024.118507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Wheat is a major grain crop of the world that provides a stable food for human consumption. Large amounts of by-products/waste materials are produced after the harvesting and processing of wheat crop. Such materials can cause an environmental issue if not disposed of properly. Several studies have shown that wheat residues can be efficient precursors for adsorbents because of their availability, renewability, lignocellulosic composition, and surface active groups enriched structure. In the literature, there are few review articles that address wheat residues-based adsorbents. However, these reviews were specific in terms of adsorbate or adsorbent and did not provide detailed information about the modification, properties, and regeneration of these adsorbents. This article extensively reviews the utilization of wheat biomass/waste including straw, bran, husk, and stalk as precursors for raw or untreated, chemically treated, carbonaceous, and composite adsorbents against various environmental pollutants. The influences of inlet pollutant amount, adsorbent dose, pH, temperature, and time on the performance of adsorbents against pollutants were considered. The maximum uptakes, equilibrium time, and adsorption nature were identified from isotherms, kinetic, and thermodynamic studies. The highest adsorbed amounts of most tested contaminants were 448.20, 322.58, and 578.13 mg/g for lead, chromium, and copper, 1374.6 and 1449.4 mg/g for methylene blue and malachite green, and 854.75, 179.21, and 107.77 mg/g for tetracycline, phosphate, and nitrate, respectively. For the studied adsorbate/adsorbent systems the adsorption mechanism and regeneration were also discussed. Significant results and future directions are finally presented.
Collapse
Affiliation(s)
- Muthanna J Ahmed
- Department of Chemical Engineering, College of Engineering, University of Baghdad, 10071 Baghdad, Iraq.
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47040 Arta, Greece
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronic Engineering, Hellenic Mediterranean University, Chania 73100, Greece
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Muhammad Usman
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, F-35000, Rennes, France
| |
Collapse
|
5
|
Sang H, Mao C, Wu Y, Wei Y. Study on the Effect of Gamma-Ray Irradiation on the Adsorption of 99Tc and Re by a Silica-Based Pyridine Resin. TOXICS 2022; 10:638. [PMID: 36355930 PMCID: PMC9696359 DOI: 10.3390/toxics10110638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A silica-based anion exchange resin was synthesized and used to remove 99Tc from real radioactive liquid waste. The adsorbent had a uniform particle size and exhibited good thermal stability up to 100 °C, which is promising for large-scale column experiments. In accordance with the chemical similarity with Tc, Re was used as a surrogate in this study. The N 1s high-resolution XPS spectra of the adsorbent before and after the adsorption of Re indicated that the ion exchange reaction was the controlling mechanism in the process. After γ-ray irradiation, the changing trend of the Kd was consistent, which showed that the competitive adsorption of NO3- led to a decrease in Kd. The adsorption capacity for the Re decreased slightly from 35.8 to 31.9 mg/g with the increase in the absorbed dose from 0 to 50 kGy. The separation and recovery of Re and the coexisting ions were achieved by chromatographic separation experiments, and the recovery percentage of Re was 86%. In real radioactive liquid waste, N3/SiO2 exhibited good selectivity toward 99Tc over the coexisting metals, namely, 90Sr, 137Cs, 241Am, and U, and the decontamination efficiency of 99Tc attained 65%.
Collapse
|
6
|
Qin B, Hu Y, Xie M, Xue L, Liao C, Yang F. Highly Selective Adsorption of 99TcO 4-/ReO 4- by a Novel Polyamide-Functionalized Polyacrylamide Polymer Material. TOXICS 2022; 10:630. [PMID: 36287910 PMCID: PMC9608480 DOI: 10.3390/toxics10100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The treatment of radioactive wastewater is one of the major problems in the current research. With the development of nuclear energy, the efficient removal of 99TcO4- in radioactive wastewater has attracted the attention of countries all over the world. In this study, a novel functional polyamide polymer p-(Amide)-PAM was synthesized by the two-step method. The experimental results show that p-(Amide)-PAM has good adsorptive properties for 99TcO4-/ReO4- and has good selectivity in the nitric acid system. The kinetics of the reaction of p-(Amide)-PAM with 99TcO4-/ReO4- was studied. The results show that p-(Amide)-PAM has a fast adsorption rate for 99TcO4-/ReO4-, the saturated adsorption capacity reaches 346.02 mg/g, and the material has good reusability. This new polyamide-functionalized polyacrylamide polymer material has good application prospects in the removal of 99TcO4- from radioactive wastewater.
Collapse
Affiliation(s)
- Ben Qin
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanqin Hu
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiying Xie
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Liyan Xue
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Chunfa Liao
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Fan Yang
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Sichuan Jcc Rare Earth Matals New Material Co., Ltd., Chengdu 610213, China
| |
Collapse
|
7
|
Zhao Y, Shi H, Tang X, Kuang D, Zhou J, Yang F. Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe 3O 4-Sunflower Straw Biochar. TOXICS 2022; 10:534. [PMID: 36136499 PMCID: PMC9504546 DOI: 10.3390/toxics10090534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Humans and ecosystems are severely damaged by the existence of As(III/V) in the aquatic environment. Herein, an advanced Fe3O4@SFBC (Fe3O4-sunflower straw biochar) adsorbent was fabricated by co-precipitation method with sunflower straw biochar (SFBC) prepared at different calcination temperatures and different SFBC/Fe mass ratios as templates. The optimal pH for As(III/V) removal was investigated, and Fe3O4@SFBC shows removal efficiency of 86.43% and 95.94% for As(III) and As(V), respectively, at pH 6 and 4. The adsorption effect of calcining and casting the biochar-bound Fe3O4 obtained at different temperatures and different SFBC/Fe mass ratios were analyzed by batch experiments. The results show that when the SFBC biochar is calcined at 450 °C with an SFBC/Fe mass ratio of 1:5, the adsorption of As(III) and As(V) reaches the maximum, which are 121.347 and 188.753 mg/g, respectively. Fe3O4@SFBC morphology, structure, surface functional groups, magnetic moment, and internal morphology were observed by XRD, FTIR, SEM, TEM, and VSM under optimal working conditions. The material shows a small particle size in the range of 12-14 nm with better magnetic properties (54.52 emu/g), which is suitable for arsenic removal. The adsorption mechanism of As(III/V) by Fe3O4@SFBC indicates the presence of chemisorption, electrostatic, and complexation. Finally, the material was used for five consecutive cycles of adsorption-desorption experiments, and no significant decrease in removal efficiency was observed. Therefore, the new adsorbent Fe3O4@SFBC can be efficiently used for arsenic removal in the aqueous system.
Collapse
Affiliation(s)
- Yuling Zhao
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hao Shi
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin Tang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Daihong Kuang
- College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jinlong Zhou
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fangyuan Yang
- College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|