1
|
Wang L, Ji Y, Wang L, Cao J, Wang F, Li C. Fluorescent multichannel sensor array based on three carbon dots derived from Tibetan medicine waste for the quantification and discrimination of multiple heavy metal ions in water. Mikrochim Acta 2024; 191:254. [PMID: 38594554 DOI: 10.1007/s00604-024-06340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
A fluorescent multichannel sensor array has been established based on three carbon dots derived from Tibetan medicine waste for rapid quantification and discrimination of six heavy metal ions. Due to the chelation between metal ions and carbon dots (CDs), this fluorescence "turn off" mode sensing array can quantify six metal ions as low as "μM" level. Moreover, the six heavy metal ions display varying quenching effects on these three CDs owing to diverse chelating abilities between each other, producing differential fluorescent signals for three sensing channels, which can be plotted as specific fingerprints and converted into intuitive identification profiles via principal component analysis (PCA) and hierarchical cluster analysis (HCA) technologies to accurately distinguish Cu2+, Fe3+, Mn2+, Ag+, Ce4+, and Ni2+ with the minimum differentiated concentration of 5 μM. Valuably, this sensing array unveils good sensitivity, exceptional selectivity, ideal stability, and excellent anti-interference ability for both mixed standards and actual samples. Our contribution provides a novel approach for simultaneous determination of multiple heavy metal ions in environmental samples, and it will inspire the development of other advanced optical sensing array for simultaneous quantification and discrimination of multiple targets.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yang Ji
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Lu Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jia Cao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Yan H, Wu L, Wang J, Zheng Y, Zhao F, Bai Q, Hu H, Liang H, Niu X. Target-triggered dual signal amplification based on HCR-enhanced nanozyme activity for the sensitive visual detection of Escherichia coli. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:496-502. [PMID: 38078483 DOI: 10.1039/d3ay01824e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The detection of foodborne pathogens is crucial for food hygiene regulation and disease diagnosis. Colorimetry has become one of the main analytical methods in studying foodborne pathogens due to its advantages of visualization, low cost, simple operation, and no complex instrument. However, the low sensitivity limits its applications in early identification and on-site detection for trace analytes. In order to overcome such a limitation, herein we propose a joint strategy featuring dual signal amplification based on the hybridization chain reaction (HCR) and DNA-enhanced peroxidase-like activity of gold nanoparticles (AuNPs) for the sensitive visual detection of Escherichia coli. Target bacteria bound specifically to the aptamer domain in the capture hairpin probe, exposing the trigger domain for HCR and forming the extended double-stranded DNA (dsDNA) structures. The peroxidase-like catalytic capacity of AuNPs can be enhanced significantly by dsDNAs with the sticky ends of dsDNAs being adsorbed on AuNPs and the rigidity of dsDNAs causing the spatial regulation of AuNP concentration. The intensity of the enhancement was linearly related to the number of target bacteria. With the above strategy, the detection limit of our colorimetric method for Escherichia coli was down to 28 CFU mL-1 within a short analytical time (50 min). This study provides a new perspective for the sensitive and visual detection of early bacterial contamination in foods.
Collapse
Affiliation(s)
- Hangli Yan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Linghao Wu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jingyu Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Zheng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Fengxia Zhao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hongmei Hu
- Hengyang Center for Disease Control and Prevention, Hengyang 421001, China
| | - Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiangheng Niu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Wei Y, Wu Y, Wang X. Novel Adsorbents and Adsorption Methods for Pollutant Removal. TOXICS 2023; 11:954. [PMID: 38133355 PMCID: PMC10748321 DOI: 10.3390/toxics11120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Over the past few decades, with the rapid growth of the global population and economy, the increasing levels of various pollutants such as heavy metals, radionuclides, and organic/inorganic/biological toxins from various industries and human activities, which diffuse into aspects of the environment such as the atmosphere, soil, and natural water, have posed a serious threat to human health and the environment [...].
Collapse
Affiliation(s)
- Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421009, China
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinpeng Wang
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
| |
Collapse
|
4
|
Hu P, Tang Y, Zhu H, Xia C, Liu J, Liu B, Niu X. Multifunctional light-controllable nanozyme enabled bimodal fluorometric/colorimetric sensing of mercury ions at ambient pH. Biosens Bioelectron 2023; 238:115602. [PMID: 37595475 DOI: 10.1016/j.bios.2023.115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Nanomaterials with enzyme-like catalytic features (nanozymes) find wide use in analytical sensing. Apart from catalytic characteristics, some other interesting functions coexist in the materials. How to combine these properties to design multifunctional nanozymes for new sensing strategy development is challenging. Besides, in nanozymes it is still a challenge to conveniently control the catalytic process, which also hinders their further applications in advanced biochemical analysis. To remove the above barriers, here we design a light-controllable multifunctional nanozyme, namely manganese-inserted cadmium telluride (Mn-CdTe) particles, that integrates oxidase-like activity with luminescence together, to achieve the fluorometric/colorimetric dual-mode detection of toxic mercury ions (Hg2+) at ambient pH. The Mn-CdTe exhibits a light-triggered oxidase-mimicking catalytic behavior to induce chromogenic reactions, thus enabling one to start or stop the catalytic progress easily via applying or withdrawing light irradiation. Meanwhile, the quantum dot material can exhibit bright photoluminescence, which provides the fluorometric channel to sense targets. When Hg2+ is introduced, it rapidly leans toward Mn-CdTe through electrostatic interaction and Te-Hg bonding and induces the aggregation of the latter. As a result, the luminescence of Mn-CdTe is dynamically quenched, and the masking of active sites in aggregated Mn-CdTe leads to the decrease of light-initiated oxidase-mimetic activity. According to this principle, a new fluorometric/colorimetric bimodal method was established for Hg2+ determination with excellent performance. A 3D-printed portable platform combining paper-based test strips and an App-equipped smartphone was further fabricated, making it possible to achieve in-field sensing of the analyte in various matrices.
Collapse
Affiliation(s)
- Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuhan Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hengjia Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Changkun Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
5
|
Al-Qasmi N, Al-Gethami W, Alhashmialameer D, Ismail SH, Sadek AH. Evaluation of Green-Synthesized Cuprospinel Nanoparticles as a Nanosensor for Detection of Low-Concentration Cd(II) Ion in the Aqueous Solutions by the Quartz Crystal Microbalance Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6240. [PMID: 36143550 PMCID: PMC9502900 DOI: 10.3390/ma15186240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Cd(II) heavy metal is an extremely dangerous hazardous material for both humans and the environment. Its high toxicity is the reason behind the examination of new techniques for detecting very small concentrations of Cd(II). Recently, Quartz Crystal Microbalance (QCM) has been one of the techniques that have been widely used to detect trace heavy metal ions in solutions. It is a simple, inexpensive, portable, and sensitive gravimetric sensor due to its quality sensitivity lowest to nanograms. In this work, Cuprospinel nanoparticles were synthesized through the green synthesis approach using Psidium guajava L. leaf extract as a reducing agent, which is the first scientific description to report the preparation of these nanoparticles by this method. Subsequently, the synthesized nanoparticles were subjected to the characterization of their crystallinity, structure, and morphology by the XRD, N2 adsorption-desorption, zeta potential, DLS, AFM, SEM, and TEM analyzers. The prepared Cuprospinel nanoparticles were evaluated as a nanosensor for the detection of the very low concentration of Cd(II) ions in aqueous solutions using the QCM technique. The results of the characterization proved that the Cuprospinel nanoparticles have formed in the nanoscale with sub-spherical shapes and particles size ranging from 20 to 80 nm. The BET surface area and pore size analysis revealed that the synthesized Cuprospinel nanoparticles possess a surface area of 47.3 m2/g, an average pore size of 1.5 nm, and a micropore volume of 0.064 cc/g. The QCM results demonstrated the success of the Cuprospinel nanoparticles sensor in detecting the tiny amounts of Cd(II) ions in the aqueous solutions with concentrations reaching about 3.6 ng/L.
Collapse
Affiliation(s)
- Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Dalal Alhashmialameer
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|