1
|
Zhang X, Wang X, Wu F, Liang W, Wang S, Liang J, Zhao X, Wu F. Machine learning models to predict the bioaccessibility of parent and substituted polycyclic aromatic hydrocarbons (PAHs) in food: Impact on accurate health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136102. [PMID: 39423650 DOI: 10.1016/j.jhazmat.2024.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Food intake is the primary pathway for polycyclic aromatic hydrocarbons (PAHs) to enter the human body. Once ingested, PAHs tend to accumulate, posing health risks. To accurately assess the risk of PAHs from food, concentrations of 10 parent PAHs (PPAHs) and 15 substituted PAHs (SPAHs) were detected across 34 commonly consumed foods. Results indicated that SPAHs concentrations (3.89-11.6 ng/g dw) were higher than PPAH concentrations (1.66-3.43 ng/g dw) in shrimp and shellfish and freshwater fish. Four machine learning algorithms were used to predict the bioaccessibility of PAHs in foods, with the random forest model performing the best (R2 =0.987, RMSE=5.99). Feature variable importance analysis revealed that lipid and protein contents in food are critical variables influencing PAH bioaccessibility. Subsequently, the bioaccessibility of 25 PAHs in various foods was predicted to explore its impact on health risk assessment. Consequently, the carcinogenic risks considering bioaccessibility (5.62 ×10-5-7.12 ×10-5) was about an order of magnitude lower than that ignoring bioaccessibility (1.52 ×10-4-1.69 ×10-4), yet it still exceeded 10⁻6, indicating potential carcinogenic risks. Although PPAHs and alkylated PAHs were predominant in foods, 6-nitrochrysene was the main compound inducing both non-carcinogenic and carcinogenic risks owing to its high toxicity. This study developed a novel method for assessing pollutant bioaccessibility and evaluating its impact on health risk assessment, which provides a valuable model for managing massive hazardous pollutants and is essential for improving the accuracy of health risk assessment.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fei Wu
- College of Artificial Intelligence and Automation, Hohai University, Nanjing 211100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sixian Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jinglin Liang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Nsonwu-Anyanwu AC, Helal M, Khaked A, Eworo R, Usoro CAO, EL-Sikaily A. Polycyclic aromatic hydrocarbons content of food, water and vegetables and associated cancer risk assessment in Southern Nigeria. PLoS One 2024; 19:e0306418. [PMID: 39042616 PMCID: PMC11265677 DOI: 10.1371/journal.pone.0306418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
The polycyclic aromatic hydrocarbon content of water (four surface water, six underground water (borehole water), seven sachet water), barbecued food and their fresh equivalents (barbecued beef, fish, plantain, pork, yam, chicken, chevon, potato, corn), oil (three palm oil, nine vegetable oil), and fresh vegetable samples (water leaf, bitter leaf, cabbage, carrot, cucumber, pumpkin, garlic, ginger, green leaf, Gnetum Africana, onion, pepper) were determined by GC-MS analysis. The current study also determined the estimated lifetime cancer risk from ingesting polycyclic aromatic hydrocarbon-contaminated food. The polycyclic aromatic hydrocarbon content of water, oil, vegetable, and food samples were within the United States Environmental Protection Agency/World Health Organization safe limits. The naphthalene, benzo(b)fluoranthene, and benzo(k)fluoranthene levels in surface water were significantly higher than in borehole samples (P = 0.000, 0.047, 0.047). Vegetable oils had higher anthracene and chrysene compared to palm oil (P = 0.023 and 0.032). Significant variations were observed in levels of naphthalene, acenaphthylene, phenanthrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene among the barbecued and fresh food samples (P <0.05). Barbecued pork, potato, and corn had significantly higher naphthalene compared to their fresh equivalents (P = 0.002, 0.017, and <0.001). Consumption of barbecued food and surface water may be associated with higher exposure risk to polycyclic aromatic hydrocarbons which may predispose to increased cancer health risk. The current work explores in depth the concentration of polycyclic aromatic hydrocarbons in different dietary categories that pose direct risk to humans via direct consumption. These findings add knowledge to support future considerations for human health.
Collapse
Affiliation(s)
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries, Cairo, Egypt
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Azza Khaked
- National Institute of Oceanography and Fisheries, Cairo, Egypt
- Biochemistry Department, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Raymond Eworo
- Department of Clinical Chemistry and Immunology, University of Calabar, Calabar, Nigeria
| | | | | |
Collapse
|
4
|
Cao C, Wu YY, Lv ZY, Wang JW, Wang CW, Zhang H, Wang JJ, Chen H. Uptake of polycyclic aromatic hydrocarbons (PAHs) from PAH-contaminated soils to carrots and Chinese cabbages under the greenhouse and field conditions. CHEMOSPHERE 2024; 360:142405. [PMID: 38782134 DOI: 10.1016/j.chemosphere.2024.142405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with the properties of structural stability, semi-volatility, and hydrophobicity are toxic and persistent in environments; thus, their transport and fate in agroecosystems is essential for reducing PAH accumulation in the edible parts of crops. Here, we cultivated cabbages (Brassica pekinensis L.) and carrots (Daucus carota L.) in PAH-contaminated soils under the greenhouse and field conditions. After harvesting, we observed a 9.5-46% reduction in soil ∑PAH concentrations. There were 37% of bioconcentration factors (BCFbs) > 1 and 93% of translocation factors (TFab) > 1, while low-molecular-weight (LMW) PAHs had higher BCFbs than high-molecular-weight (HMW) PAHs. The PAH concentrations showed significant and positive correlations among soils, the belowground parts, and the aboveground parts. The toxicity equivalent concentration (TEQBaP) followed the order of cabbage (greenhouse) > cabbage (field) > carrot (greenhouse) > carrot (field), suggesting potentially higher health risks in cabbage relative to carrot and vegetables under the greenhouse relative to field condition. Our study suggested growing carrots under field conditions as a management strategy for reducing the risks of vegetables grown in PAH-contaminated soils.
Collapse
Affiliation(s)
- Chun Cao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Yu-Yao Wu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Zhen-Ying Lv
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Chen-Wen Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Jun-Jian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina, 29634, United States.
| |
Collapse
|
5
|
Hubai K, Kováts N, Eck-Varanka B, Tumurbaatar S, Teke G. Accumulation of Atmospheric PAHs in White Mustard - Can the Seeds Be Affected? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:76. [PMID: 38733550 PMCID: PMC11088551 DOI: 10.1007/s00128-024-03895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/09/2024] [Indexed: 05/13/2024]
Abstract
Traffic-related particulate matter emissions have been considerably reduced due to stringent regulations in Europe. However, emission of diesel-powered vehicles still poses a significant environmental threat, affecting rural ecosystems and agriculture. Several studies have reported that polycyclic aromatic hydrocarbons (PAHs), a group of potentially toxic organic compounds, can accumulate in crops and vegetables. In our study, white mustard (Sinapis alba L.) plants were experimentally treated with an extract of diesel exhaust. PAH concentrations were measured in the different plant compartments (stems, leaves and seeds), bioconcentration factors (BCFs) were also calculated. Significant accumulation was measured in the leaves and seeds, stems showed lower accumulation potential. All plant matrices showed high tendency to accumulate higher molecular weight PAHs, BCF was the highest in the 6-ring group. The fact that considerable accumulation was experienced in the seeds might show the risk of cultivating crops nearby roads highly impacted by traffic-related emissions.
Collapse
Affiliation(s)
- Katalin Hubai
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Nora Kováts
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary.
| | - Bettina Eck-Varanka
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Selenge Tumurbaatar
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., 8184, Balatonfuzfo, Hungary
| |
Collapse
|
6
|
Tarigholizadeh S, Sushkova S, Rajput VD, Ranjan A, Arora J, Dudnikova T, Barbashev A, Mandzhieva S, Minkina T, Wong MH. Transfer and Degradation of PAHs in the Soil-Plant System: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:46-64. [PMID: 38108272 DOI: 10.1021/acs.jafc.3c05589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, persistent organic pollutants that threaten ecosystems and human health. Consistent monitoring is essential to minimize the entry of PAHs into plants and reduce food chain contamination. PAHs infiltrate plants through multiple pathways, causing detrimental effects and triggering diverse plant responses, ultimately increasing either toxicity or tolerance. Primary plant detoxification processes include enzymatic transformation, conjugation, and accumulation of contaminants in cell walls/vacuoles. Plants also play a crucial role in stimulating microbial PAHs degradation by producing root exudates, enhancing bioavailability, supplying nutrients, and promoting soil microbial diversity and activity. Thus, synergistic plant-microbe interactions efficiently decrease PAHs uptake by plants and, thereby, their accumulation along the food chain. This review highlights PAHs uptake pathways and their overall fate as contaminants of emerging concern (CEC). Understanding plant uptake mechanisms, responses to contaminants, and interactions with rhizosphere microbiota is vital for addressing PAH pollution in soil and ensuring food safety and quality.
Collapse
Affiliation(s)
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Anuj Ranjan
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida 201301, India
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Andrey Barbashev
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Hong Kong, China; Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
7
|
Sedlák V, Bujňák A, Gajdoš A, Gajdošová D, Poráčová J, Konečná M, Fejér J, Gruľová D, Vašková H, Mydlárová Blaščáková M. Cytogenetic analysis of coke oven workers in Eastern Slovakia. Cent Eur J Public Health 2023; 31:S95-S100. [PMID: 38272485 DOI: 10.21101/cejph.a7845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE Our study aimed to evaluate the extent of polycyclic aromatic hydrocarbon (PAH) exposure in coke oven workers from Eastern Slovakia by cytogenetic analysis of human peripheral lymphocytes. METHODS A total of 81 peripheral blood samples were collected from PAH-exposed workers (mean age 45.84 ± 9.73 years) and 30 samples constituted the control group (41.93 ± 15.39 years). The samples were processed using routine cytological analysis. Conventional cytogenetic analysis of human peripheral lymphocytes has been used to evaluate the effects of PAHs. RESULTS Comparison of the aberrant cells in the total exposed with the controls showed a significant difference (p < 0.05). A high level of significance (p < 0.001) was observed when comparing the gaps between the exposed group and the control group. There was a significant difference (p < 0.01) in aberrant cells and chromatid breaks (p < 0.05) in the GR1 working subgroup compared with the control group. The results of the correlation analysis did not show a significant relationship between the length of occupational exposure and the frequency of aberrant cells (r = 0.071, p = 0.529). Similarly, no association was observed between smoking among coke plant workers and the frequency of aberrant cells (r = 0.117, p = 0.538). CONCLUSION Cytogenetic analysis showed an increased frequency of chromosomal aberrations in coke oven workers in Eastern Slovakia.
Collapse
Affiliation(s)
- Vincent Sedlák
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovak Republic
| | - Anton Bujňák
- Regional Public Health Authority with the Seat in Kosice, National Reference Centre for Evaluation of Late Effects of Chemical Substances by Genetic Toxicology Methods, Kosice, Slovak Republic
| | - Andrej Gajdoš
- Regional Public Health Authority with the Seat in Kosice, National Reference Centre for Evaluation of Late Effects of Chemical Substances by Genetic Toxicology Methods, Kosice, Slovak Republic
| | - Dagmar Gajdošová
- Regional Public Health Authority with the Seat in Kosice, National Reference Centre for Evaluation of Late Effects of Chemical Substances by Genetic Toxicology Methods, Kosice, Slovak Republic
| | - Janka Poráčová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovak Republic
| | - Mária Konečná
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovak Republic
| | - Jozef Fejér
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovak Republic
| | - Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovak Republic
| | - Hedviga Vašková
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovak Republic
| | - Marta Mydlárová Blaščáková
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovak Republic
| |
Collapse
|