1
|
Furxhi I, Faccani L, Zanoni I, Brigliadori A, Vespignani M, Costa AL. Design rules applied to silver nanoparticles synthesis: A practical example of machine learning application. Comput Struct Biotechnol J 2024; 25:20-33. [PMID: 38444982 PMCID: PMC10914561 DOI: 10.1016/j.csbj.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
The synthesis of silver nanoparticles with controlled physicochemical properties is essential for governing their intended functionalities and safety profiles. However, synthesis process involves multiple parameters that could influence the resulting properties. This challenge could be addressed with the development of predictive models that forecast endpoints based on key synthesis parameters. In this study, we manually extracted synthesis-related data from the literature and leveraged various machine learning algorithms. Data extraction included parameters such as reactant concentrations, experimental conditions, as well as physicochemical properties. The antibacterial efficiencies and toxicological profiles of the synthesized nanoparticles were also extracted. In a second step, based on data completeness, we employed regression algorithms to establish relationships between synthesis parameters and desired endpoints and to build predictive models. The models for core size and antibacterial efficiency were trained and validated using a cross-validation approach. Finally, the features' impact was evaluated via Shapley values to provide insights into the contribution of features to the predictions. Factors such as synthesis duration, scale of synthesis and the choice of capping agents emerged as the most significant predictors. This study demonstrated the potential of machine learning to aid in the rational design of synthesis process and paves the way for the safe-by-design principles development by providing insights into the optimization of the synthesis process to achieve the desired properties. Finally, this study provides a valuable dataset compiled from literature sources with significant time and effort from multiple researchers. Access to such datasets notably aids computational advances in the field of nanotechnology.
Collapse
Affiliation(s)
- Irini Furxhi
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
- Transgero Limited, Limerick, Ireland
| | - Lara Faccani
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Ilaria Zanoni
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Andrea Brigliadori
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Maurizio Vespignani
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Anna Luisa Costa
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| |
Collapse
|
2
|
Gomes SIL, Zanoni I, Blosi M, Costa AL, Hristozov D, Scott-Fordsmand JJ, Amorim MJB. Safe and sustainable by design Ag nanomaterials: A case study to evaluate the bio-reactivity in the environment using a soil model invertebrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171860. [PMID: 38518823 DOI: 10.1016/j.scitotenv.2024.171860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Safe-and-sustainable-by-design (SSbD) nanomaterials (NMs) or NM-containing products are a priority. Silver (Ag) NMs have a vast array of applications, including biomedical and other products, even as nanopesticides. Thus, their release to the environment is expected to increase. The aim of the present study was to assess the ecotoxicity of the SSbD Ag NM to the soil model species Enchytraeus crypticus (Oligochaeta). The Ag NM tested consists in a SSbD Ag with biomedical applications, a hydroxyethyl cellulose (HEC) coated Ag NMs (AgHEC) and its toxicity was compared to the naked Ag NMs (Ag-Sigma), an Ag-based biomedical product (PLLA-Ag: Poly l-Lactide microfibers doped with Ag), and AgNO3. Effects were assessed both in soil and aqueous media, following the standard OECD guideline in soil (28 days) and the OECD extension (56 days), and short-term pulse (5 days) in aqueous media: reconstituted water (ISO water) and soil:water (S:W) extracts, followed by a 21-days recovery period in soil. Ag materials were thoroughly characterized as synthesized and during the test in media and animals. Results in S:W showed AgHEC was more toxic than Ag-Sigma (ca. 150 times) and PLLA-Ag (ca. 2.5 times), associated with a higher Ag uptake. Higher toxicity was related to a smaller hydrodynamic size and higher suspension stability, which in turn resulted in a higher bioavailability of Ag NMs and released ions, particularly in S:W. Toxicity was correlated with the main physicochemical features, providing useful prediction of AgNMs bioactivity. The ability to test E. crypticus in a range of media with different and/or increasing complexity (water, S:W extracts, soil) provided an excellent source to interpret results and is here recommended.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ilaria Zanoni
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Magda Blosi
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Anna L Costa
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Italy
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Sudheshwar A, Apel C, Kümmerer K, Wang Z, Soeteman-Hernández LG, Valsami-Jones E, Som C, Nowack B. Learning from Safe-by-Design for Safe-and-Sustainable-by-Design: Mapping the current landscape of Safe-by-Design reviews, case studies, and frameworks. ENVIRONMENT INTERNATIONAL 2024; 183:108305. [PMID: 38048736 DOI: 10.1016/j.envint.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
With the introduction of the European Commission's "Safe and Sustainable-by-Design" (SSbD) framework, the interest in understanding the implications of safety and sustainability assessments of chemicals, materials, and processes at early-innovation stages has skyrocketed. Our study focuses on the "Safe-by-Design" (SbD) approach from the nanomaterials sector, which predates the SSbD framework. In this assessment, SbD studies have been compiled and categorized into reviews, case studies, and frameworks. Reviews of SbD tools have been further classified as quantitative, qualitative, or toolboxes and repositories. We assessed the SbD case studies and classified them into three categories: safe(r)-by-modeling, safe(r)-by-selection, or safe(r)-by-redesign. This classification enabled us to understand past SbD work and subsequently use it to define future SSbD work so as to avoid confusion and possibilities of "SSbD-washing" (similar to greenwashing). Finally, the preexisting SbD frameworks have been studied and contextualized against the SSbD framework. Several key recommendations for SSbD based on our analysis can be made. Knowledge gained from existing approaches such as SbD, green and sustainable chemistry, and benign-by-design approaches needs to be preserved and effectively transferred to SSbD. Better incorporation of chemical and material functionality into the SSbD framework is required. The concept of lifecycle thinking and the stage-gate innovation model need to be reconciled for SSbD. The development of high-throughput screening models is critical for the operationalization of SSbD. We conclude that the rapid pace of both SbD and SSbD development necessitates a regular mapping of the newly published literature that is relevant to this field.
Collapse
Affiliation(s)
- Akshat Sudheshwar
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Christina Apel
- Leuphana University of Lüneburg, Institute of Sustainable Chemistry, Lüneburg, Germany
| | - Klaus Kümmerer
- Leuphana University of Lüneburg, Institute of Sustainable Chemistry, Lüneburg, Germany; International Sustainable Chemistry Collaborative Centre (ISC3), Bonn, Germany
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Lya G Soeteman-Hernández
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | | | - Claudia Som
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
4
|
Anh NH, Min YJ, Thi My Nhung T, Long NP, Han S, Kim SJ, Jung CW, Yoon YC, Kang YP, Park SK, Kwon SW. Unveiling potentially convergent key events related to adverse outcome pathways induced by silver nanoparticles via cross-species omics-scale analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132208. [PMID: 37544172 DOI: 10.1016/j.jhazmat.2023.132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The adverse effects of silver nanoparticles (AgNPs) have been studied in various models. However, there has been discordance between molecular responses across the literature, attributed to methodological biases and the physicochemical variability of AgNPs. In this study, a gene pathway meta-analysis was conducted to identify convergent and divergent key events (KEs) associated with AgNPs and explore common patterns of these KEs across species. We performed a cross-species analysis of transcriptomic data from multiple studies involving various AgNPs exposure. Pathway enrichment analysis revealed a set of pathways linked to oxidative stress, apoptosis, and metabolite and lipid metabolism, which are considered potentially conserved KEs across species. Subsequently, experiments confirmed that oxidative stress responses could be early KEs in both Caenorhabditis elegans and HepG2 cells. Moreover, AgNPs preferentially impaired the mitochondria, as evidenced by mitochondrial fragmentation and dysfunction. Furthermore, disruption of amino acids, nucleotides, sulfur compounds, glycerolipids, and glycerophospholipids metabolism were in good agreement with gene pathway shreds of evidence. Our findings imply that, although there may be organism-specific responses, potentially conserved events could exist regardless of species and physicochemical factors. These results provide valuable insights into the development of adverse outcome pathways of AgNPs across species and the regulatory toxicity of AgNPs.
Collapse
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, the Republic of Korea
| | - Seunghyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Cheol Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, the Republic of Korea.
| |
Collapse
|
5
|
Chivé C, Mc Cord C, Sanchez-Guzman D, Brookes O, Joseph P, Lai Kuen R, Phan G, Baeza-Squiban A, Devineau S, Boland S. 3D model of the bronchial epithelial barrier to study repeated exposure to xenobiotics: Application to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104281. [PMID: 37742817 DOI: 10.1016/j.etap.2023.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
There is still a lack of in vitro human models to evaluate the chronic toxicity of drugs and environmental pollutants. Here, we used a 3D model of the human bronchial epithelium to assess repeated exposures to xenobiotics. The Calu-3 human bronchial cell line was exposed to silver nanoparticles (AgNP) 5 times during 12 days, at the air-liquid interface, to mimic single and repeated exposure to inhaled particles. Repeated exposures induced a stronger induction of the metal stress response and a steady oxidative stress over time. A sustained translocation of silver was observed after each exposure without any loss of the epithelial barrier integrity. The proteomic analysis of the mucus revealed changes in the secreted protein profiles associated with the epithelial immune response after repeated exposures only. These results demonstrate that advanced in vitro models are efficient to investigate the adaptive response of human cells submitted to repeated xenobiotic exposures.
Collapse
Affiliation(s)
- Chloé Chivé
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Claire Mc Cord
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Daniel Sanchez-Guzman
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Oliver Brookes
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Prinitha Joseph
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - René Lai Kuen
- Université Paris Cité, INSERM UMS 025-CNRS UMS 3612, Faculté de Pharmacie, F-75006 Paris, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRSI - plateforme Paterson, F-92260 Fontenay-aux-Roses, France
| | - Armelle Baeza-Squiban
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France.
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Sonja Boland
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| |
Collapse
|
6
|
Kose O, Béal D, Motellier S, Pelissier N, Collin-Faure V, Blosi M, Bengalli R, Costa A, Furxhi I, Mantecca P, Carriere M. Physicochemical Transformations of Silver Nanoparticles in the Oro-Gastrointestinal Tract Mildly Affect Their Toxicity to Intestinal Cells In Vitro: An AOP-Oriented Testing Approach. TOXICS 2023; 11:199. [PMID: 36976964 PMCID: PMC10056345 DOI: 10.3390/toxics11030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of silver nanoparticles (Ag NPs) in food and consumer products suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract. The aim of this study was to investigate the toxicity of Ag NPs in a human intestinal cell line, either uncoated or coated with polyvinylpyrrolidone (Ag PVP) or hydroxyethylcellulose (Ag HEC) and digested in simulated gastrointestinal fluids. Physicochemical transformations of Ag NPs during the different stages of in vitro digestion were identified prior to toxicity assessment. The strategy for evaluating toxicity was constructed on the basis of adverse outcome pathways (AOPs) showing Ag NPs as stressors. It consisted of assessing Ag NP cytotoxicity, oxidative stress, genotoxicity, perturbation of the cell cycle and apoptosis. Ag NPs caused a concentration-dependent loss of cell viability and increased the intracellular level of reactive oxygen species as well as DNA damage and perturbation of the cell cycle. In vitro digestion of Ag NPs did not significantly modulate their toxicological impact, except for their genotoxicity. Taken together, these results indicate the potential toxicity of ingested Ag NPs, which varied depending on their coating but did not differ from that of non-digested NPs.
Collapse
Affiliation(s)
- Ozge Kose
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - David Béal
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Sylvie Motellier
- Univ. Grenoble-Alpes, Lab Measure Securing & Environm, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Nathalie Pelissier
- Univ. Grenoble-Alpes, Lab of Advanced Characterization for Energy, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Véronique Collin-Faure
- Univ. Grenoble-Alpes, CEA, CNRS UMR5249, IRIG DIESE CBM, Chem & Biol Met, 38054 Grenoble, France
| | - Magda Blosi
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Anna Costa
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Irini Furxhi
- Transgero Ltd., Newcastle West, V42 V384 Limerick, Ireland
| | - Paride Mantecca
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| |
Collapse
|