1
|
Zeng L, Yang F, Chen Y, Chen S, Xu M, Gu C. Temperature and Dissolved Oxygen Drive Arsenic Mobility at the Sediment-Water Interface in the Lake Taihu. TOXICS 2024; 12:471. [PMID: 39058123 PMCID: PMC11281122 DOI: 10.3390/toxics12070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In this study examining the effects of temperature and dissolved oxygen (DO) on arsenic (As) release at the sediment-water interface (SWI), it was found that an increase in temperature promoted the formation of an anaerobic environment and the reduction and desorption of As fractions within the sediments. A temperature of 32 °C was the most favorable condition for As release at the SWI, and low DO conditions aggravated this process. Even under high DO conditions, the release of sediment As was significantly accelerated under high-temperature conditions, allowing dissolved As to rapidly migrate to the overlying water. In this process, the release of As from sediments was a consequence of the transformation of As fractions in the sediments.
Collapse
Affiliation(s)
- Liqing Zeng
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| | - Yuyan Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Songmei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Mei Xu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Chongyu Gu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| |
Collapse
|
2
|
Zhang Y, Qiu X, Luo J, Li H, How SW, Wu D, He J, Cheng Z, Gao Y, Lu H. A review of the phosphorus removal of polyphosphate-accumulating organisms in natural and engineered systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169103. [PMID: 38065508 DOI: 10.1016/j.scitotenv.2023.169103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/13/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Increasing eutrophication has led to a continuous deterioration of many aquatic ecosystems. Polyphosphate-accumulating organisms (PAOs) can provide insight into the human response to this challenge, as they initiate enhanced biological phosphorus removal (EBPR) through cyclical anaerobic phosphorus release and aerobic phosphorus uptake. Although the limiting environmental factors for PAO growth and phosphorus removal have been widely discussed, there remains a gap in the knowledge surrounding the differences in the type and phosphorus removal efficiencies of natural and engineered PAO systems. Furthermore, due to the limitations of PAOs in conventional wastewater treatment environments, there is an urgent need to find functional PAOs in extreme environments for better wastewater treatment. Therefore, it is necessary to explore the effects of extreme conditions on the phosphorus removal efficiency of PAOs as well as the types, sources, and characteristics of PAOs. In this paper, we summarize the response mechanisms of PAOs, denitrifying polyphosphate-accumulating organisms (D-PAOs), aerobic denitrifying polyphosphate-accumulating organisms (AD-PAOs), and sulfur-related PAOs (S-PAOs). The mechanism of nitrogen and phosphorus removal in PAOs is related to the coupling cycles of carbon, nitrogen, phosphorus, and sulfur. The genera of PAOs differ in natural and engineered systems, but PAOs have more diversity in aquatic environments and soils. Recent studies on the impact of several parameters (e.g., temperature, carbon source, pH, and dissolved oxygen) and extracellular polymer substances on the phosphorus removal efficiency of PAOs in natural and engineered systems are further discussed. Most of the PAOs screened under extreme conditions still had high phosphorus removal efficiencies (>80.0 %). These results provide a reference for searching for PAOs with different adaptations to achieve better wastewater treatment.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Xiaoqing Qiu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jiahao Luo
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Huishi Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Seow-Wah How
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Ghent B9000, Belgium
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Ghent B9000, Belgium
| | - Juhua He
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Zihang Cheng
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Yunan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|