1
|
Harris KL, Harris KJ, Banks LD, Adunyah SE, Ramesh A. Acceleration of benzo(a)pyrene-induced colon carcinogenesis by Western diet in a rat model of colon cancer. Curr Res Toxicol 2024; 6:100162. [PMID: 38496007 PMCID: PMC10943645 DOI: 10.1016/j.crtox.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortalities in the USA and around 52,550 people were expected to die from this disease by December 2023. The objective of this study was to investigate the effect of diet type on benzo(a)pyrene [B(a)P]-induced colon cancer in an adult male rat model, the Polyposis In the Rat Colon (PIRC) kindred type. Groups of PIRC rats (n = 10) were fed with AIN-76A regular diet (RD) or Western diet (WD) and received 25, 50 and 100 µg B(a)P/kg body wt. via oral gavage for 60 days. Rats fed diets alone, but no B(a)P, served as controls. After exposure, rats were euthanized; colon and liver samples were analyzed for activation of drug metabolizing enzymes (DMEs) CYP1A1, CYP1B1, SULT and GST. Plasma and tissue samples were analyzed by reverse phase-HPLC for B(a)P metabolites. In addition to these studies, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the 32P-postlabeling method using a thin-layer chromatography system. Western diet consumption resulted in a marked increase in DME expression and B(a)P metabolite concentrations in rats that were administered 100 µg/kg B(a)P + WD (p < 0.05) compared to other treatment groups. Our findings demonstrate that WD accelerates the development of colon tumors induced by B(a)P through enhanced biotransformation, and the products of this process (metabolites) were found to bind with DNA and form B(a)P-DNA adducts, which may have given rise to colon polyps characterized by gain in tumor number, sizes, and dysplasia.
Collapse
Affiliation(s)
- Kelly L Harris
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Kenneth J Harris
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Leah D Banks
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| |
Collapse
|
2
|
Zhao Z, Yang Q, Zhou T, Liu C, Sun M, Cui X, Zhang X. Anticancer potential of Bacillus coagulans MZY531 on mouse H22 hepatocellular carcinoma cells via anti-proliferation and apoptosis induction. BMC Complement Med Ther 2023; 23:318. [PMID: 37705007 PMCID: PMC10498517 DOI: 10.1186/s12906-023-04120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Bacillus coagulans have recently revealed its anticancer effects, but few investigations are available on their effects on liver cancer proliferation, and the precise mechanism to mark its impact on apoptosis-related signaling pathways has yet to be elucidated. The aim of this study was to evaluate the anti-proliferative effect of B. coagulans MZY531 and apoptosis induction in the mouse H22 hepatocellular carcinoma cell line. The anti-proliferative activity of B. coagulans MZY531 was evaluated by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis was revealed with Terminal Deoxynucleotidyl Transferase (TDT)-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometric analysis. The expressions of apoptosis-related protein were determined by western blot analysis. The CCK-8 assay revealed that B. coagulans MZY531 inhibited the H22 cells proliferation in a concentration-dependent manner. TUNEL staining revealed an increased apoptosis rate in H22 cells following intervention with B. coagulans MZY531. Furthermore, flow cytometric analysis showed that B. coagulans MZY531 treatment (MOI = 50 and 100) significantly alleviated the H22 cells apoptosis compared with the control group. Western blot analysis found B. coagulans MZY531 significantly decreased level of phospho-PI3K (p-PI3K), phospho-AKT (p-AKT), and phospho-mTOR (p-mTOR) compared with the control group. Furthermore, H22 cells treatment with B. coagulans MZY531 enhanced the expression of caspase-3 and Bax and jeopardized the expression of Bcl-2. Taken together, apoptosis induction and cell proliferation inhibition via PI3K/AKT/mTOR and Bax/Bcl-2/Caspase-3 pathway are promising evidence to support B. coagulans MZY531 as a potential therapeutic agent for cancer.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Qian Yang
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Tingting Zhou
- Innovation Practice Center, The Changchun University of Traditional Chinese Medicine, Changchun, 130000, P.R. China
| | - Chunhong Liu
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Manqing Sun
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Xinmu Cui
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Xuewu Zhang
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China.
| |
Collapse
|
3
|
Greco G, Zeppa SD, Agostini D, Attisani G, Stefanelli C, Ferrini F, Sestili P, Fimognari C. The Anti- and Pro-Tumorigenic Role of Microbiota and Its Role in Anticancer Therapeutic Strategies. Cancers (Basel) 2022; 15:190. [PMID: 36612186 PMCID: PMC9818275 DOI: 10.3390/cancers15010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Human gut microbiota physiologically and actively participates as a symbiont to a wide number of fundamental biological processes, such as absorption and metabolism of nutrients, regulation of immune response and inflammation; gut microbiota plays also an antitumor role. However, dysbiosis, resulting from a number of different situations-dysmicrobism, infections, drug intake, age, diet-as well as from their multiple combinations, may lead to tumorigenesis and is associated with approximately 20% of all cancers. In a diagnostic, prognostic, therapeutic, and epidemiological perspective, it is clear that the bifaceted role of microbiota needs to be thoroughly studied and better understood. Here, we discuss the anti- and pro-tumorigenic potential of gut and other microbiota districts along with the causes that may change commensal bacteria from friend to foes.
Collapse
Affiliation(s)
- Giulia Greco
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giuseppe Attisani
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| |
Collapse
|
4
|
Asai T, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Encouraging Tactics with Genetically Modified Probiotics to Improve Immunity for the Prevention of Immune-Related Diseases including Cardio-Metabolic Disorders. Biomolecules 2022; 13:biom13010010. [PMID: 36671395 PMCID: PMC9855998 DOI: 10.3390/biom13010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.
Collapse
|
5
|
Biodetoxification and Protective Properties of Probiotics. Microorganisms 2022; 10:microorganisms10071278. [PMID: 35888997 PMCID: PMC9319832 DOI: 10.3390/microorganisms10071278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotic consumption is recognized as being generally safe and correlates with multiple and valuable health benefits. However, the mechanism by which it helps detoxify the body and its anti-carcinogenic and antimutagenic potential is less discussed. A widely known fact is that globalization and mass food production/cultivation make it impossible to keep all possible risks under control. Scientists associate the multitude of diseases in the days when we live with these risks that threaten the population’s safety in terms of food. This review aims to explore whether the use of probiotics may be a safe, economically viable, and versatile tool in biodetoxification despite the numerous risks associated with food and the limited possibility to evaluate the contaminants. Based on scientific data, this paper focuses on the aspects mentioned above and demonstrates the probiotics’ possible risks, as well as their anti-carcinogenic and antimutagenic potential. After reviewing the probiotic capacity to react with pathogens, fungi infection, mycotoxins, acrylamide toxicity, benzopyrene, and heavy metals, we can conclude that the specific probiotic strain and probiotic combinations bring significant health outcomes. Furthermore, the biodetoxification maximization process can be performed using probiotic-bioactive compound association.
Collapse
|
6
|
Mohseni AH, Casolaro V, Bermúdez-Humarán LG, Keyvani H, Taghinezhad-S S. Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes 2022; 13:1-17. [PMID: 33615993 PMCID: PMC7899637 DOI: 10.1080/19490976.2021.1886844] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B or Akt (PKB/Akt) signaling pathways are considered as two but somewhat interconnected significant immune pathways which play complex roles in a variety of physiological processes as well as pathological conditions. Aberrant activation of PI3K/Akt/mTOR signaling pathways has been reported to be associated in a wide variety of human diseases. Over the past few years, growing evidence in in vitro and in vivo models suggest that this sophisticated and subtle cascade mediates the orchestration of the immune response in health and disease through exposure to probiotics. An expanding body of literature has highlighted the contribution of probiotics and PI3K/Akt/mTOR signaling pathways in gastrointestinal disorders, metabolic syndrome, skin diseases, allergy, salmonella infection, and aging. However, longitudinal human studies are possibly required to verify more conclusively whether the investigational tools used to understand the regulation of these pathways might provide effective approaches in the prevention and treatment of various disorders. In this Review, we summarize the experimental evidence from recent peer-reviewed studies and provide a brief overview of the causal relationship between the effects of probiotics and their metabolites on the components of PI3K/Akt/mTOR signaling pathways and human disease.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | | | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,Hossein Keyvani Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran, Tel +98 21 88715350
| | - Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran,CONTACT Sedigheh Taghinezhad-S Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
7
|
Zhao L, Xu M, Pan X, Zhang B, Dou Q. Binding and detoxification ability of lactobacillus acidophilus towards di-n-butyl phthalate: Change of MAPK pathway in Caco-2 cell model. J Proteomics 2021; 247:104333. [PMID: 34298185 DOI: 10.1016/j.jprot.2021.104333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/31/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Di-n-butyl phthalate (DBP), a common compound of phthalates, can pose a risk to humans as a contaminant in the food industry. At present, the molecular mechanism of gene and protein toxicity caused by DBP in human cells is unclear. This in vitro study investigated the potential of inactivated Lactobacillus acidophilus NCFM in alleviating the damage caused by DBP in Caco-2 cells. According to the results from transcriptome and proteome analyses, the Caco-2 cells treated by DBP was resulted finally endoplasmic reticulum stress and mitochondrial oxidative damage. The most important differentially expressed genes and proteins involved in Caco-2 cells treated with NCFM to relieve DBP's cytotoxicity were TNF, NF-κB, CREB, P21, GADD45, FOS and CASP3. The molecular mechanism of DBP toxicity alleviated by strain NCFM was involved the MAPK pathway, via DBP bind to strain NCFM and avoid the activation of TNF receptor by DBP, so down-regulated the NF-κB, CREB, P21, GADD45, and CASP3, relieving the apoptosis of Caco-2 cells. Overall, our data provide new insights into detoxification of phthalate by using Lactobacillus. SIGNIFICANCE: Here we sequenced and assembled the transcriptome from Caco-2 cells which were treated with 4 groups: Control, DBP, strain NCFM, and strain NCFM+DBP groups, and combined it with proteome to characterize DBP detoxification genes/proteins through multiomics analysis. The cell viability in DBP treated groups were significantly increased by NCFM strain, indicating NCFM strain has the ability to alleviate the cytotoxicity of DBP via their binding ability with toxins. Furthermore, the results of transcriptome and proteome analysis showed that the signaling pathway of strain NCFM can alleviate DBP toxicity through MAPK pathway, and the potential biomarkers were identified too. This research may provided new information for developing new detoxification strategies for DBP.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Henan Normal University, 453007 Xinxiang, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Mengfan Xu
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Xin Pan
- College of Life Sciences, Henan Normal University, 453007 Xinxiang, China
| | - Bolin Zhang
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Qingnan Dou
- College of Life Sciences, Henan Normal University, 453007 Xinxiang, China
| |
Collapse
|
8
|
Liu J, He H, Xu M, Wang T, Dziugan P, Zhao H, Zhang B. Detoxification of Oral Exposure to Benzo(a)pyrene by Lactobacillus plantarum CICC 23121 in Mice. Mol Nutr Food Res 2021; 65:e2001149. [PMID: 33900027 DOI: 10.1002/mnfr.202001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Indexed: 11/11/2022]
Abstract
This study's previous work showed that the carcinogen and mutagen benzo(a)pyrene (BaP) can be adsorbed by Lactobacillus cells in vitro. However, in vivo BaP detoxification by lactic acid bacteria has not yet been investigated. The present study evaluates the effects of orally administered Lactobacillus plantarum CICC 23121 in BaP-treated mice. Oral administration of 50 mg kg-1 BaP perturbed the intestinal microflora, caused Proteobacteria to predominate, and severely damaged DNA. However, oral administration of 5 × 1010 CFU mL-1 CICC 23121 in BaP-treated mice enhances fecal BaP excretion from 181.70 ± 1.04 µg/(g∙h) to 271.47 ± 11.71 µg/(g∙h) after 6 h. Fecal BaP excretion reaches up to 280.66 ± 22.97 µg/(g∙h) after the first 4 days of orally administered CICC 23121 and decreased to 94.31 ± 2.64 µg/(g∙h) by day 11. Intestinal microbiota are restored and Firmicutes predominates. CICC 23121 alleviates BaP-induced DNA damage and reduces tail length from 56.37 ± 5.31 to 39.69 ± 4.27 µm. Therefore, oral CICC23121 consumption is a promising strategy for reducing BaP toxicity in mice. To the best of our knowledge, this report is the first report to demonstrate in vivo that Lactobacillus cells can detoxify BaP.
Collapse
Affiliation(s)
- Jinxia Liu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Huan He
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Piotr Dziugan
- Institute of Fermentation Technology & Microbiology, Technical University of Lodz, Lodz, 90924, Poland
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|