1
|
Giretová M, Medvecký Ľ, Demčišáková Z, Luptáková L, Petrovová E, Štulajterová R. Effect of agarose/gelatin gel addition on the pro-angiogenic potential of polyhydroxybutyrate/chitosan scaffolds. Front Cell Dev Biol 2025; 12:1504268. [PMID: 39906552 PMCID: PMC11790645 DOI: 10.3389/fcell.2024.1504268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
The aim of this paper was to evaluate the effect of gel addition to biopolymeric scaffolds on the pro-angiogenic and basic material characteristics of the final composite for use in regenerative medicine. The studied scaffold consisted of natural biopolymers: polyhydroxybutyrate, chitosan, agarose, and gelatin. The final scaffold was characterized by high macroporosity (90%) and wide pore size distribution. As is known, the pore size is a critical factor for cell ingrowth in grafts after implantation in the body and for angiogenic development and creation of new vessels. After 9 days of cultivation in the culture medium, the scaffold retained its physicochemical properties without any tendency of disintegration. The addition of polymeric gels to the scaffold improved the mechanical stability of the composite. In vitro cytotoxicity testing showed good adherence of the seeded L929 fibroblasts on the scaffold and strong ingrowth of cells into the macropores. No sign of cytotoxicity was identified by both the MTS assay and live/dead cell staining. The quail chorioallantoic membrane (CAM) assay-as an alternative to in vivo assays-revealed suitable pro-angiogenic properties of the scaffold for the formation and ingrowth of new blood vessels. Moreover, the upregulation of gene expression responsible for the activation of angiogenic cascade clearly demonstrated a positive effect of the prepared composites on angiogenesis as an essential part of new tissue formation and the regeneration process itself.
Collapse
Affiliation(s)
- Mária Giretová
- Division of Functional and Hybrid Materials, Institute of Materials Research of SAS, Košice, Slovakia
| | - Ľubomír Medvecký
- Division of Functional and Hybrid Materials, Institute of Materials Research of SAS, Košice, Slovakia
| | - Zuzana Demčišáková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Lenka Luptáková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Eva Petrovová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Radoslava Štulajterová
- Division of Functional and Hybrid Materials, Institute of Materials Research of SAS, Košice, Slovakia
| |
Collapse
|
2
|
Zhang X, Ngo H, Wagner K, Fan X, Wu C. Developmental toxicity and estrogenic activity of antimicrobial phenolic-branched fatty acids using in silico simulations and in vivo and in vitro bioassay. FRONTIERS IN TOXICOLOGY 2024; 6:1380485. [PMID: 39285929 PMCID: PMC11402896 DOI: 10.3389/ftox.2024.1380485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Due to the growing safety and environmental concerns associated with biocides, phenolic-soy branched chain fatty acids (phenolic-soy BCFAs) are synthesized as new bio-based antimicrobial agents. Safety evaluation is essential before the wide adoption of these new antimicrobial products. This study was initiated to evaluate the safety of four phenolic-soy BCFAs (with phenol, thymol, carvacrol, or creosote branches). Methyl-branched iso-oleic acid, phenol, and creosote were included in the study as controls. In silico toxicity simulation tools predicted that the phenolic BCFAs had much higher toxicities to aquatic organisms than free phenolics did, while the opposite was predicted for rats. The developmental toxicity of four phenolic-soy BCFAs was assessed using an in vivo chicken embryonic assay. Results showed that creosote-soy BCFA had much lower mortality rates than creosote at the same dosages. Additionally, creosote-soy BCFA and methyl-branched iso-oleic acid induced minimal estrogenic activity in the concentration range of 10 nM - 1 µM. Carvacrol-soy BCFA treatments significantly increased (p < 0.05) oxidative stress levels with higher thiobarbituric acid reactive substances in the livers of chicken embryos. Altogether, the phenolic-soy BCFAs, especially creosote-soy BCFA, reported in this study are potentially promising and safer bio-based antimicrobial products.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Helen Ngo
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Karen Wagner
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
3
|
Yuan R, Adlimoghaddam A, Zhu Y, Han X, Bartke A. Early Life Interventions: Impact on Aging and Longevity. Aging Dis 2024:AD.202.0516. [PMID: 39325935 DOI: 10.14336/ad.202.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 09/28/2024] Open
Abstract
Across mammals, lifespans vary remarkably, spanning over a hundredfold difference. Comparative studies consistently reveal a strong inverse relationship between developmental pace and lifespan, hinting at the potential for early-life interventions (ELIs) to influence aging and lifespan trajectories. Focusing on postnatal interventions in mice, this review explores how ELIs influence development, lifespan, and the underlying mechanisms. Previous ELI studies have employed a diverse array of approaches, including dietary modifications, manipulations of the somatotropic axis, and various chemical treatments. Notably, these interventions have demonstrated significant impacts on aging and lifespan in mice. The underlying mechanisms likely involve pathways related to mitochondrial function, mTOR and AMPK signaling, cellular senescence, and epigenetic alterations. Interestingly, ELI studies may serve as valuable models for investigating the complex regulatory mechanisms of development and aging, particularly regarding the interplay among somatic growth, sexual maturation, and lifespan. In addition, prior research has highlighted the intricacies of experimental design and data interpretation. Factors such as timing, sex-specific effects, administration methods, and animal husbandry practices must be carefully considered to ensure the reliability and reproducibility of results, as well as rigorous interpretation. Addressing these factors is essential for advancing our understanding of how development, aging, and lifespan are regulated, potentially opening avenues for interventions that promote healthy aging.
Collapse
Affiliation(s)
- Rong Yuan
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Aida Adlimoghaddam
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Neurology, Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Yun Zhu
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Xiuqi Han
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
4
|
Tang Y, Yin L, Liu L, Chen Q, Lin Z, Zhang D, Wang Y, Liu Y. Comparative Analysis of Different Proteins and Metabolites in the Liver and Ovary of Local Breeds of Chicken and Commercial Chickens in the Later Laying Period. Int J Mol Sci 2023; 24:14394. [PMID: 37762699 PMCID: PMC10531955 DOI: 10.3390/ijms241814394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The liver and ovary perform a vital role in egg production in hens. In the later laying period, the egg-laying capacity of female hens, particularly that of local breeds, declines significantly. Hence, it is essential to study the features and conditions of the ovary and liver during this period. In this research, we characterized the proteins and metabolites in the liver and ovary of 55-week-old Guangyuan gray chickens (Group G) and Hy-Line gray chickens (Group H) by using liquid chromatography chip/electrospray ionization quadruple time-of-flight/mass spectroscopy (LC-MS/MS). In total, 139 differentially expressed proteins (DEPs) and 186 differential metabolites (DMs) were identified in the liver, and 139 DEPs and 36 DMs were identified in the ovary. The upregulated DEPs and DMs in both the liver and ovary of Group G were primarily enriched in pathways involved in amino acid and carbohydrate metabolism. This suggests that energy metabolism was highly active in the Guangyuan gray chickens. In contrast, the upregulated DEPs and DMs in Group H were mainly enriched in pathways associated with lipid metabolism, which may explain the higher egg production and the higher fatty liver rate in Hy-Line gray hens in the later laying period. Additionally, it was found that the unique protein s-(hydroxymethyl) glutathione dehydrogenase (ADH4) in Group G was implicated in functions such as fatty acid degradation, glycolysis, and pyruvate metabolism, whereas the unique proteins, steroid sulfatase (STS), glucosylceramidase (LOC107050229), and phospholipase A2 Group XV (PLA2G15), in Group H were involved in the metabolism of steroid hormones and glycerol phosphate. In conclusion, variations in how carbohydrates, lipids, and amino acids are processed in the liver and ovary of local breeds of chicken and commercial hens towards the end of their laying period could explain the disparities in their egg production abilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.Y.); (L.L.); (Q.C.); (Z.L.); (D.Z.); (Y.W.)
| |
Collapse
|
5
|
Demcisakova Z, Luptakova L, Tirpakova Z, Kvasilova A, Medvecky L, De Spiegelaere W, Petrovova E. Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Ex Ovo Chorioallantoic Membrane Model. Cancers (Basel) 2022; 14:cancers14174194. [PMID: 36077732 PMCID: PMC9454696 DOI: 10.3390/cancers14174194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The chorioallantoic membrane (CAM) is an avian extraembryonic membrane widely used as an experimental assay to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the CAM has become popular in scientific studies focused on the use of its potential for the study of biocompatibility of materials for regenerative strategies and tissue engineering applications. Great research efforts are being made to develop innovative biomaterials able to treat hard tissue defects, including diseases such as a bone cancer. In this article, we describe an approach to detect the formation of blood vessels inside the porous acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold using the CAM assay as an in vivo alternative animal model, including macroscopic, histological, immunohistochemical, and molecular evaluation of the biocompatibility. Abstract The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.
Collapse
Affiliation(s)
- Zuzana Demcisakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: (Z.D.); (E.P.)
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Zuzana Tirpakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Alena Kvasilova
- Institute of Anatomy, Charles University, U Nemocnice 3, 12800 Prague, Czech Republic
| | - Lubomir Medvecky
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Institute of Materials Research, The Slovak Academy of Sciences, Watsonova 1935/47, 04001 Kosice, Slovakia
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: (Z.D.); (E.P.)
| |
Collapse
|