1
|
Zhao K, Wang K, Qian S, Wang S, Li F. Occurrence, removal, and risk assessment of polycyclic aromatic hydrocarbons and their derivatives in typical wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 252:118989. [PMID: 38677406 DOI: 10.1016/j.envres.2024.118989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Wastewater treatment plants (WWTPs) have a certain removal capacity for polycyclic aromatic hydrocarbons (PAHs) and their derivatives, but some of them are discharged with effluent into the environment, which can affect the environment. Therefore, to understand the presence, sources, and potential risks of PAHs and their derivatives in WWTPs. Sixteen PAHs, three chlorinated polycyclic aromatic hydrocarbons (ClPAHs), three oxidized polycyclic aromatic hydrocarbons (OPAHs), and three methylated polycyclic aromatic hydrocarbons (MPAHs) were detected in the influent and effluent water of three WWTPs in China. The average concentrations of their influent ∑PAHs, ∑ClPAHs, ∑OPAHs, and ∑MPAHs ranged from 2682.50 to 2774.53 ng/L, 553.26-906.28 ng/L, 415.40-731.56 ng/L, and 534.04-969.83 ng/L, respectively, and the effluent concentrations ranged from 823.28 to 993.37 ng/L, 269.43-489.94 ng/L, 285.93-463.55 ng/L, and 376.25-512.34 ng/L, respectively. The growth of heat transport and industrial energy consumption in the region has a significant impact on the level of PAHs in WWTPs. According to the calculated removal efficiencies of PAHs and their derivatives in the three WWTPs (A, B, and C), the removal rates of PAHs and their derivatives were 69-72%, 62-71%, and 68-73%, respectively, and for the substituted polycyclic aromatic hydrocarbons (SPAHs), the removal rates were 41-49%, 31-40%, and 33-39%, respectively; moreover, the removal rates of PAHs were greater than those of SPAHs in the WWTPs. The results obtained via the ratio method indicated that the main sources of PAHs in the influent of WWTPs were the combustion of coal and biomass, and petroleum contamination was the secondary source. In risk evaluation, there were 5 compounds for which the risk quotient was considered high ecological risk. During chronic disease evaluation, there were 11 compounds with a risk quotient considered to indicate high risk. PAHs and SPAHs with high relative molecular masses in the effluent of WWTPs pose more serious environmental hazards than their PAHs counterparts.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China.
| | - Kaixuan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Shifeng Qian
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Su Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Li JN, Zhang Y, Wang JX, Hu J, Lu XM, Xie WX, Zhang ZF, Tang ZH. Methylated derivatives of polycyclic aromatic hydrocarbons in road dust, green belt soil and parking lot dust: occurrence, spatial distribution and emission sources. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:162. [PMID: 38592579 DOI: 10.1007/s10653-024-01914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024]
Abstract
Convenient transportation facilities not only bring the higher standard of living to big cities, but also bring some environmental pollution problems. In order to understand the presence and sources of methylated polycyclic aromatic hydrocarbons (Me-PAHs) in environmental samples and their association with total organic carbon (TOC), 49 Me-PAHs were analyzed in road dust, green belt soil and parking lot dust samples in Harbin. The results showed that the ranges of the total Me-PAHs (ΣMe-PAHs) content in road dust were 221-5826 ng/g in autumn and 697-7302 ng/g in spring, and those in green belt soil were 170-2509 ng/g and 155-9215 ng/g in autumn and spring, respectively. And ΣMe-PAHs content in parking lot dust ranged from 269 to 2515 ng/g in surface parking lots and from 778 to 10,052 ng/g in underground parking lots. In these samples, the composition profile of Me-PAHs was dominated by 4-ring Me-PAHs. The results of diagnostic ratios and principal component analysis (PCA) indicated that petrogenic and pyrogenic sources were the main sources of Me-PAHs in the samples. Spearman correlation analysis showed that there was no correlation for Me-PAHs in road dust and green belt soil on the same road. Furthermore, there was a significant positive relationship (0.12 ≤ R2 ≤ 0.67, P < 0.05) between Me-PAHs concentrations and the TOC content. This study demonstrated the presence of Me-PAHs with high concentrations in the road environment samples of Harbin.
Collapse
Affiliation(s)
- Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jie Hu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, Heilongjiang, China
| | - Wen-Xi Xie
- Qiqihar Environmental Monitoring Station, No. 571, Bukuinan Street, Longsha DistrictHeilongjiang Province, Qiqihar City, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, Heilongjiang, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China.
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Li Y, Zhang Q, Guo D, Dang J. Characteristics and Risk Assessment of PAH Pollution in Soil of a Retired Coking Wastewater Treatment Plant in Taiyuan, Northern China. TOXICS 2023; 11:toxics11050415. [PMID: 37235231 DOI: 10.3390/toxics11050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
We analyzed the soil at the site of a former coking wastewater treatment plant on redeveloped land in Taiyuan, northern China, in an attempt to detect the presence of 16 types of priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency (US EPA) and evaluate the potential pollution risks. The results show that the total proportion of PAHs in the surface soil of the redeveloped land ranged from 0.3 to 1092.57 mg/kg, with an average value of 218.5 mg/kg, mainly consisting of high-ring (5-6 rings) components. Characteristic ratio analysis indicated that the pollution was mainly related to the combustion of petroleum, coal, and biomasses. The wastewater treatment units operated according to the following treatment train: advection oil separation tank, dissolved air flotation tank, aerobic tank, secondary sedimentation tank, and sludge concentration tank. Our study found that pollution resulting from low-ring PAHs mainly appeared in the advection oil separation tank during the pre-wastewater treatment stage, while medium-ring PAH contamination mainly occurred in the dissolved air floatation tank, aerobic tank, and secondary sedimentation tank during the middle stages of wastewater treatment. High-ring PAH contamination primarily appeared in the sludge concentration tank in the latter stage of wastewater treatment. Based on our assessment of the ecological risk using the Nemerow Comprehensive Pollution Index and the toxicity equivalent factor (TEF) method, we determined that individual PAHs in the study area exceeded acceptable levels and the total amount of pollution was potentially harmful to the ecological environment. In addition, the comprehensive lifetime cancer risk for different populations resulting from exposure to the soil in the study area was determined to be within acceptable limits based on the average PAH concentrations.
Collapse
Affiliation(s)
- Yuan Li
- Insitute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Quanxi Zhang
- Insitute of Environmental Science, Shanxi University, Taiyuan 030006, China
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Jinhua Dang
- Shanxi Province Ecological Environment Monitoring and Emergency Support Center (Shanxi Province Eco-Environmental Science Research Institute), Taiyuan 030001, China
| |
Collapse
|
4
|
Fate and Occurrence of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Water and Sediment from Songhua River, Northeast China. WATER 2021. [DOI: 10.3390/w13091196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Songhua River is one of the most populated and oldest industrial areas in Northeast China. To understand the sources and distribution of polycyclic aromatic hydrocarbons and their derivatives, such as 16 priority (PAHs), 33 methylated (Me-PAHs), and 12 nitrated (NPAHs) in river water and sediment, were noticed. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs in river water scaled from 135 to 563, 9.36 to 711, and 1.26 to 64.7 ng L−1, with mean values of 286, 310, and 17.9 ng L−1, and those in sediments were from 35.8 to 2000 ng g−1, 0.62 to 394 ng g−1, and 0.28 to 176 ng g−1 (dry weight) with mean values of 283, 103, and 21.7 ng g−1. The compositions proved that two-ring and three-ring compounds of PAHs, NPAHs, and four-ring, six-ring of Me-PAHs were prevalent in water samples; in contrast, four-ring dominated in sediments. Principal components analysis (PCA) and diagnostic ratios confirmed that pollutant source was mixed petrogenic and pyrogenic origin. The fugacity fraction (ƒƒ) was also calculated to explain the trend of sediment–water exchange, high ƒƒ values found in summer, for most HMW PAHs and Me-PAHs that these substances acted as a secondary source of emissions from sediment to water. The risk assessment for water was categorized as high.
Collapse
|