1
|
Witte T, Hicks C, Hermans A, Shields S, Overy DP. Debunking the Myth of Fusarium poae T-2/HT-2 Toxin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3949-3957. [PMID: 38375818 PMCID: PMC10905990 DOI: 10.1021/acs.jafc.3c08437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Fusarium poae is commonly detected in field surveys of Fusarium head blight (FHB) of cereal crops and can produce a range of trichothecene mycotoxins. Although experimentally validated reports of F. poae strains producing T-2/HT-2 trichothecenes are rare, F. poae is frequently generalized in the literature as a producer of T-2/HT-2 toxins due to a single study from 2004 in which T-2/HT-2 toxins were detected at low levels from six out of forty-nine F. poae strains examined. To validate/substantiate the observations reported from the 2004 study, the producing strains were acquired and phylogenetically confirmed to be correctly assigned as F. poae; however, no evidence of T-2/HT-2 toxin production was observed from axenic cultures. Moreover, no evidence for a TRI16 ortholog, encoding a key acyltransferase shown to be necessary for T-2 toxin production in other Fusarium species, was observed in any of the de novo assembled genomes of the F. poae strains. Our findings corroborate multiple field-based and in vitro studies on FHB-associated Fusarium populations which also do not support the production of T-2/HT-2 toxins with F. poae and therefore conclude that F. poae should not be generalized as a T-2/HT-2 toxin producing species of Fusarium.
Collapse
Affiliation(s)
- Thomas
E. Witte
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Carmen Hicks
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Anne Hermans
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Sam Shields
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - David P. Overy
- Agriculture
and Agri-Food Canada, Ottawa Research and
Development Centre, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
2
|
Meneely J, Greer B, Kolawole O, Elliott C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins (Basel) 2023; 15:481. [PMID: 37624238 PMCID: PMC10467144 DOI: 10.3390/toxins15080481] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 were introduced in the European Union in 2013 and discussions are ongoing as to the establishment of maximum levels. This review provides a concise assessment of the existing understanding concerning the toxicological effects of T-2 and HT-2 in humans and animals, their biosynthetic pathways, occurrence, impact of climate change on their production and an evaluation of the analytical methods applied to their detection. This study highlights that the ecology of F. sporotrichioides and F. langsethiae as well as the influence of interacting environmental factors on their growth and activation of biosynthetic genes are still not fully understood. Predictive models of Fusarium growth and subsequent mycotoxin production would be beneficial in predicting the risk of contamination and thus aid early mitigation. With the likelihood of regulatory maximum limits being introduced, increased surveillance using rapid, on-site tests in addition to confirmatory methods will be required. allowing the industry to be proactive rather than reactive.
Collapse
Affiliation(s)
- Julie Meneely
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Brett Greer
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang 12120, Thailand
| |
Collapse
|
3
|
Khairullina A, Tsardakas Renhuldt N, Wiesenberger G, Bentzer J, Collinge DB, Adam G, Bülow L. Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases Involved in Deoxynivalenol Detoxification. Toxins (Basel) 2022; 14:toxins14070446. [PMID: 35878183 PMCID: PMC9318758 DOI: 10.3390/toxins14070446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oat is susceptible to several Fusarium species that cause contamination with different trichothecene mycotoxins. The molecular mechanisms behind Fusarium resistance in oat have yet to be elucidated. In the present work, we identified and characterised two oat UDP-glucosyltransferases orthologous to barley HvUGT13248. Overexpression of the latter in wheat had been shown previously to increase resistance to deoxynivalenol (DON) and nivalenol (NIV) and to decrease disease the severity of both Fusarium head blight and Fusarium crown rot. Both oat genes are highly inducible by the application of DON and during infection with Fusarium graminearum. Heterologous expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae conferred high levels of resistance to DON, NIV and HT-2 toxins, but not C4-acetylated trichothecenes (T-2, diacetoxyscirpenol). Recombinant enzymes AsUGT1 and AsUGT2 expressed in Escherichia coli rapidly lost activity upon purification, but the treatment of whole cells with the toxin clearly demonstrated the ability to convert DON into DON-3-O-glucoside. The two UGTs could therefore play an important role in counteracting the Fusarium virulence factor DON in oat.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
- Correspondence:
| | - Nikos Tsardakas Renhuldt
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - Gerlinde Wiesenberger
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Johan Bentzer
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Gerhard Adam
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| |
Collapse
|
4
|
Meyer JC, Birr T, Hennies I, Wessels D, Schwarz K. Reduction of deoxynivalenol, T-2 and HT-2 toxins and associated Fusarium species during commercial and laboratory de-hulling of milling oats. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1163-1183. [PMID: 35385360 DOI: 10.1080/19440049.2022.2059576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oats (Avena sativa L.) are well known for their nutritional properties but are susceptible to the growth of different Fusarium fungi resulting in mycotoxin contamination of harvested oats. In this study, oat samples from harvest years 2011 to 2017 were preselected for their suitability as milling oats for food purposes with DON contents below 1750 µg/kg. The reduction of DON, T-2 and HT-2 toxins during the commercial de-hulling process was analysed. While the average reduction for the sum of T-2 and HT-2 toxins in large oat kernels was 85%, the reduction for thin kernels was 66%. The reduction for DON was about 60% and did not differ for the two kernel fractions. In laboratory de-hulling experiments, milling oat samples and de-hulled oat kernels with known DON, T-2 and HT-2 toxin content were correlated with the associated DNA amount of Fusarium graminearum, Fusarium culmorum and Fusarium langsethiae. The reduction of the Fusarium DNA amount after de-hulling was comparable to the reduction of the associated mycotoxins. Notably, the correlation between F. langsethiae DNA amounts and the sum of T-2 and HT-2 toxin contents was R2 = 0.69 in milling oats and it rose to R2 = 0.85 in de-hulled oat kernels. In laboratory tests, at least one third of the initial levels of DON and the sum of T-2 and HT-2 toxins could be removed by polishing off the first parts of the outer layers; two thirds remained in the polished oat kernels. These observations indicate that de-hulling alone may not be completely sufficient to remove mycotoxin contamination in oats. These findings are of high importance in the discussion of determining legal maximum levels for DON or the sum of T-2 and HT-2 toxins in intermediate and final products.
Collapse
Affiliation(s)
- Jens C Meyer
- H.&J. Brüggen KG, Lübeck, Germany.,Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Tim Birr
- Division of Plant Diseases and Crop Protection, Institute of Phytopathology, Kiel University, Kiel, Germany
| | | | | | - Karin Schwarz
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Gavrilova OP, Gagkaeva TY, Orina AS, Markova AS, Kabashov AD, Loskutov IG. Resistance of oat breeding lines to grain contamination with Fusarium langsethiae and T-2/HT-2 toxins. Vavilovskii Zhurnal Genet Selektsii 2021; 25:732-739. [PMID: 34950844 PMCID: PMC8649749 DOI: 10.18699/vj21.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Fusarium disease of oats reduces yield quality due to decreasing germination that is caused by the contamination of grain with mycotoxins produced by Fusarium fungi. The aim of this study was to characterize the resistance of naked breeding lines of oats to fungal grain infection and to contamination with T-2 and HT-2 toxins. Thirteen naked oat breeding lines and two naked varieties, Nemchinovsky 61 and Vyatskiy, as well as a husked variety Yakov, were grown under natural conditions in the Nemchinovka Federal Research Center in 2019-2020. The contamination of grain with fungi was determined by the mycological method and real-time PCR. The analysis of mycotoxins was carried out by ELISA. In oats, Alternaria (the grain infection was 15-90 %), Cochliobolus (1-33 %), Cladosporium (1-19 %), Epicoccum (0-11 %), and Fusarium (3-17 %) fungi prevailed in the grain mycobiota. The predominant Fusarium species were F. poae (its proportion among Fusarium fungi was 49-68 %) and F. langsethiae (29-28 %). The highest amounts of F. langsethiae DNA ((27.9-71.9) × 10-4 pg/ng) and T-2/HT-2 toxins (790-1230 μg/kg) were found in the grain of husked oat Yakov. Among the analysed naked oat lines, the amount of F. langsethiae DNA varied in the range of (1.2-42.7) × 10-4 pg/ng,and the content of T-2/HT-2 toxins was in the range of 5-229 μg/kg. Two oat breeding lines, 54h2476 and 66h2618, as well as a new variety, Azil (57h2396), can be characterized as highly resistant to infection with Fusarium fungi and contamination with mycotoxins compared to the control variety Vyatskiy.
Collapse
Affiliation(s)
- O P Gavrilova
- All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| | - T Yu Gagkaeva
- All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| | - A S Orina
- All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| | - A S Markova
- Federal Research Center "Nemchinovka", Novoivanovskoe, Moscow region, Russia
| | - A D Kabashov
- Federal Research Center "Nemchinovka", Novoivanovskoe, Moscow region, Russia
| | - I G Loskutov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
6
|
Kolawole O, De Ruyck K, Greer B, Meneely J, Doohan F, Danaher M, Elliott C. Agronomic Factors Influencing the Scale of Fusarium Mycotoxin Contamination of Oats. J Fungi (Basel) 2021; 7:965. [PMID: 34829252 PMCID: PMC8619034 DOI: 10.3390/jof7110965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
Seven agronomic factors (crop season, farming system, harvest date, moisture, county, oat variety, and previous crop) were recorded for 202 oat crops grown across Ireland, and samples were analysed by LC-MS/MS for four major Fusarium mycotoxins: deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin and HT-2 toxin. Type A trichothecenes were present in 62% of crops, with 7.4% exceeding European regulatory limits. DON (6.4%) and ZEN (9.9%) occurrences were relatively infrequent, though one and three samples were measured over their set limits, respectively. Overall, the type of farming system and the previous crop were the main factors identified as significantly influencing mycotoxin prevalence or concentration. Particularly, the adherence to an organic farming system and growing oats after a previous crop of grass were found to decrease contamination by type A trichothecenes. These are important findings and may provide valuable insights for many other types of cereal crops as Europe moves towards a much greater organic-based food system.
Collapse
Affiliation(s)
- Oluwatobi Kolawole
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (B.G.); (J.M.); (C.E.)
| | - Karl De Ruyck
- Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (K.D.R.); (M.D.)
| | - Brett Greer
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (B.G.); (J.M.); (C.E.)
| | - Julie Meneely
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (B.G.); (J.M.); (C.E.)
| | - Fiona Doohan
- School of Biology and Environmental Science, College of Life Sciences, UCD, Belfield, D04 V1W8 Dublin, Ireland;
| | - Martin Danaher
- Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (K.D.R.); (M.D.)
| | - Christopher Elliott
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (B.G.); (J.M.); (C.E.)
| |
Collapse
|
7
|
Islam MN, Tabassum M, Banik M, Daayf F, Fernando WGD, Harris LJ, Sura S, Wang X. Naturally Occurring Fusarium Species and Mycotoxins in Oat Grains from Manitoba, Canada. Toxins (Basel) 2021; 13:670. [PMID: 34564673 PMCID: PMC8473195 DOI: 10.3390/toxins13090670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016-2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.
Collapse
Affiliation(s)
- M Nazrul Islam
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Mourita Tabassum
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | - Mitali Banik
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | - W G Dilantha Fernando
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | - Linda J Harris
- Agriculture and Agri-Food Canada (AAFC), Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Srinivas Sura
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Xiben Wang
- Agriculture and Agri-Food Canada (AAFC), Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
8
|
Havrlentová M, Gregusová V, Šliková S, Nemeček P, Hudcovicová M, Kuzmová D. Relationship between the Content of β-D-Glucans and Infection with Fusarium Pathogens in Oat ( Avena sativa L.) Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1776. [PMID: 33333749 PMCID: PMC7765213 DOI: 10.3390/plants9121776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 12/12/2020] [Indexed: 01/03/2023]
Abstract
In human nutrition, oats (Avena sativa L.) are mainly used for their dietary fiber, β-D-glucans and protein content. The content of β-D-glucans in oat grain is 2-7% and is influenced by genetic and/or environmental factors. High levels of this cell walls polysaccharide are observed in naked grains of cultivated oat. It the work, the relationship between the content of β-D-glucans in oat grain and the infection with Fusarium graminearum (FG) and Fusarium culmorum (FC) was analyzed. The hypothesis was that oats with higher content of β-D-glucans are better protected and the manifestation of artificial inoculation with Fusarium strains is weaker. In the 22 oat samples analyzed, the content of β-D-glucans was 0.71-5.06%. In controls, the average content was 2.15% for hulled and 3.25% for naked grains of cultivated oats. After the infection, a decrease was observed in all, naked, hulled and wild oats. As an evidence of lower rate of infection, statistically significant lower percentage of pathogen DNA (0.39%) and less deoxynivalenol (DON) mycotoxin (FC infection 10.66 mg/kg and FG 4.92 mg/kg) were observed in naked grains compared to hulled where the level of pathogen DNA was 2.09% and the average DON level was 21.95 mg/kg (FC) and 5.52 mg/kg (FG).
Collapse
Affiliation(s)
- Michaela Havrlentová
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia; (V.G.); (D.K.)
- National Agricultural and Food Centre, Research Institute of Plant Production in Piešťany, 921 68 Piešťany, Slovakia; (S.Š.); (M.H.)
| | - Veronika Gregusová
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia; (V.G.); (D.K.)
| | - Svetlana Šliková
- National Agricultural and Food Centre, Research Institute of Plant Production in Piešťany, 921 68 Piešťany, Slovakia; (S.Š.); (M.H.)
| | - Peter Nemeček
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia;
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production in Piešťany, 921 68 Piešťany, Slovakia; (S.Š.); (M.H.)
| | - Dominika Kuzmová
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia; (V.G.); (D.K.)
| |
Collapse
|
9
|
Nogueira WV, de Oliveira FK, Garcia SDO, Sibaja KVM, Tesser MB, Garda Buffon J. Sources, quantification techniques, associated hazards, and control measures of mycotoxin contamination of aquafeed. Crit Rev Microbiol 2020; 46:26-37. [PMID: 32065532 DOI: 10.1080/1040841x.2020.1716681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the productive intensification of fish farming, the partial or total replacement of fishmeal by ingredients of plant origin became a reality within the feed industry, with the aim of reducing costs. However, this practice increased the impact of mycotoxin contamination. Studies have shown that mycotoxins can induce various disorders in fish, such as cellular and organic alterations, as well as impair functional and morphological development, and, in more severe cases, mortality. Thus, studies have been conducted to evaluate and develop strategies to prevent the formation of mycotoxins, as well as to induce their elimination, inactivation or reduction of their availability in feed.
Collapse
Affiliation(s)
- Wesclen Vilar Nogueira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Francine Kerstner de Oliveira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Sabrina de Oliveira Garcia
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Karen Vanessa Marimón Sibaja
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Marcelo Borges Tesser
- Aquatic Organism Nutrition Laboratory, Institute of Oceanography, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Jaqueline Garda Buffon
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, Bürstmayr M, Bürstmayr H. Trichothecenes in Cereal Grains - An Update. Toxins (Basel) 2019; 11:E634. [PMID: 31683661 PMCID: PMC6891312 DOI: 10.3390/toxins11110634] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Trichothecenes are sesquiterpenoid mycotoxins produced by fungi from the order Hypocreales, including members of the Fusarium genus that infect cereal grain crops. Different trichothecene-producing Fusarium species and strains have different trichothecene chemotypes belonging to the Type A and B class. These fungi cause a disease of small grain cereals, called Fusarium head blight, and their toxins contaminate host tissues. As potent inhibitors of eukaryotic protein synthesis, trichothecenes pose a health risk to human and animal consumers of infected cereal grains. In 2009, Foroud and Eudes published a review of trichothecenes in cereal grains for human consumption. As an update to this review, the work herein provides a comprehensive and multi-disciplinary review of the Fusarium trichothecenes covering topics in chemistry and biochemistry, pathogen biology, trichothecene toxicity, molecular mechanisms of resistance or detoxification, genetics of resistance and breeding strategies to reduce their contamination of wheat and barley.
Collapse
Affiliation(s)
- Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Danica Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Tatiana Y Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), St. Petersburg, Pushkin 196608, Russia.
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Maria Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Hermann Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| |
Collapse
|
11
|
Tarazona A, Gómez JV, Mateo EM, Jiménez M, Mateo F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int J Food Microbiol 2019; 306:108259. [PMID: 31349113 DOI: 10.1016/j.ijfoodmicro.2019.108259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
Cereal grains are essential ingredient in food, feed and industrial processing. One of the major causes of cereal spoilage and mycotoxin contamination is the presence of toxigenic Fusarium spp. Nanoparticles have immense applications in agriculture, nutrition, medicine or health but their possible impact on the management of toxigenic fungi and mycotoxins have been very little explored. In this report, the potential of silver nanoparticles (AgNPs) (size 14-100 nm) against the major toxigenic Fusarium spp. affecting crops and their effect on mycotoxin accumulation is evaluated for the first time. The studied Fusarium spp. (and associated mycotoxins) were F. graminearum and F. culmorum (deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone), F. sporotrichioides and F. langsethiae (T-2 and HT-2 toxins), F. poae (nivalenol), F. verticillioides and F. proliferatum (fumonisins B1 and B2) and F. oxysporum (mycotoxins no detected). The factors fungal species, AgNP dose (range 2-45 μg/mL), exposure time (range 2-30 h) and their interactions significantly influence spore viability, lag period and growth rate (GR) in subsequent cultures in maize-based medium (MBM) of all the studied species. The effective lethal doses (ED50, ED90 and ED100) to control spore viability and GR were in the range 1->45 μg/mL depending on the remaining factors. At high exposure times (20-30 h), the three effective doses ranged 1-30 μg/mL for all the studied species. At the end of the incubation period (10 days) mycotoxin levels in MBM cultures inoculated with fungal spores from treatments were strongly related with the size reached by the colony at that time. None of the treatments produced stimulation in conidia germination, GR or mycotoxin biosynthesis with respect to controls. Thus, the antifungal effect of the assayed AgNPs against the tested Fusarium spp. suggests that AgNPs could be a new antifungal ingredient in bioactive polymers (paints, films or coating) likely to be implemented in the agro-food sector for controlling these important toxigenic Fusarium spp. and their main associated mycotoxins.
Collapse
Affiliation(s)
- Andrea Tarazona
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - José V Gómez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain.
| | - Fernando Mateo
- Department of Electronic Engineering, ETSE, University of Valencia, Valencia, Spain
| |
Collapse
|