1
|
Carmona-Molero R, Aparicio-Muriana MM, Lara FJ, García-Campaña AM, Olmo-Iruela MD. Capillary electrophoresis tandem mass spectrometry to determine multiclass cyanotoxins in reservoir water and spinach samples. J Chromatogr A 2024; 1717:464666. [PMID: 38266594 DOI: 10.1016/j.chroma.2024.464666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Cyanotoxins constitute a group of toxic secondary metabolites, the presence of which in any water body poses a major health risk. Moreover, advanced organisms such as edible plants exposed to these toxins, are a possible pathway for human exposure. Green analytical chemistry is demanding environmentally friendly analytical techniques. In this sense, we propose the use of capillary electrophoresis coupled to tandem mass spectrometry (CE-MS/MS) to determine a mixture of eight cyanotoxins belonging to three different classes: cyclic peptides (microcystin-LR, microcystin-RR and nodularin), alkaloids (cylindrospermopsin and anatoxin-a) and three isomeric non-protein amino acids (β-methylamino-l-alanine, 2,4-diaminobutyric acid and N-(2-aminoethyl)glycine). Separation was achieved by using an acidic background electrolyte consisting of 2 M formic acid and 20% acetonitrile in water. Parameters affecting MS/MS detection and the sheath-liquid interface were also studied. Finally, a combination of pH-junction, field-amplified sample stacking (FASS) and acid barrage as online preconcentration strategies, was employed to improve sensitivity and efficiency. The online preconcentration applied, in combination with a dual cartridge solid-phase extraction (SPE) system, allows to obtain limits of detection in the very low range of µg·L-1 for these multiclass cyanotoxins in reservoir water samples (from 0.005 to 0.10 µg·L-1). Furthermore, for the first time cyanotoxins are analysed in spinach samples through CE-MS/MS using the same SPE procedure, following lyophilisation and solid-liquid extraction with 6 mL 80 % aqueous MeOH.
Collapse
Affiliation(s)
- Rocío Carmona-Molero
- Deparment of Analytical Chemistry, University of Granada, Av. Fuente Nueva s/n, 18071, Spain
| | - M Mar Aparicio-Muriana
- Deparment of Analytical Chemistry, University of Granada, Av. Fuente Nueva s/n, 18071, Spain
| | - Francisco J Lara
- Deparment of Analytical Chemistry, University of Granada, Av. Fuente Nueva s/n, 18071, Spain
| | - Ana M García-Campaña
- Deparment of Analytical Chemistry, University of Granada, Av. Fuente Nueva s/n, 18071, Spain
| | | |
Collapse
|
2
|
Casas Rodríguez A, Diez-Quijada L, Prieto AI, Jos A, Cameán AM. Effect of cold food storage techniques on the contents of Microcystins and Cylindrospermopsin in leaves of spinach (Spinacia oleracea) and lettuce (Lactuca sativa). Food Chem Toxicol 2022; 170:113507. [PMID: 36334728 DOI: 10.1016/j.fct.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
The presence of Cylindrospermopsin (CYN) and Microcystins (MCs) in vegetables is considered as a significant worldwide toxicological risk. Thus, this work aims to assess for the first time the impact of refrigeration (4 °C) and freezing (-20 °C) on the levels of CYN, MCs and their mixtures (CYN + MCs) in lettuce and spinach. Samples were spiked with 750 μg cyanotoxins/g dry weight (d.w.). Several storage conditions were studied: refrigeration after 24, 48 h and 7 days, and freezing for 7 days, 1 and 3 months. Cyanotoxin concentrations were determined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). For CYN, refrigeration at 48 h and 7 days was effective to decrease its concentrations up to 26% and 32%, respectively, in spinach. For MCs, refrigeration was only effective in lettuce compared to spinach, showing an important decrease of 80.3% MC-LR and 85.1% MC-YR. In spinach, CYN was stable after 3 months freezing, whereas MC contents were still reduced up to 44%. Overall, cyanotoxins were less stable in the mixture compared to individual toxins for both processes, and the effect of these storage techniques were toxin and food-specific. Further studies of cyanotoxins in foods are required for evaluating the risk for humans.
Collapse
Affiliation(s)
- Antonio Casas Rodríguez
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| |
Collapse
|
3
|
Towards a Better Quantification of Cyanotoxins in Fruits and Vegetables: Validation and Application of an UHPLC-MS/MS-Based Method on Belgian Products. SEPARATIONS 2022. [DOI: 10.3390/separations9100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vegetables and fruits can potentially accumulate cyanotoxins after water contaminated with cyanobacteria is used for irrigation. We developed and validated an analytical method to quantify eight microcystin congeners (MCs) and nodularin (NOD) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) in three different matrices. Strawberries, carrots and lettuce are selected as model matrices to represent the fruits/berries, leafy and root vegetables, sequentially. The validation of a UHPLC-MS/MS method in the strawberry matrix is novel. Matrix effects are observed in all three matrices. Our methodology uses matrix-matched calibration curves to compensate for the matrix effect. The implementation of our method on 103 samples, containing nine different sorts of fruits and vegetables from the Belgian market, showed no presence of MCs or NOD. However, the recoveries of our quality controls showed the effectiveness of our method, illustrating that the use of this method in future research or monitoring as well as in official food controls in fruit and vegetable matrices is valid.
Collapse
|
4
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Prieto AI, Guzmán-Guillén R, Jos Á, Cameán AM, de la Rosa JM, González-Pérez JA. Detection of cylindrospermopsin and its decomposition products in raw and cooked fish (Oreochromis niloticus) by analytical pyrolysis (Py-GC/MS). CHEMOSPHERE 2020; 244:125469. [PMID: 31790987 DOI: 10.1016/j.chemosphere.2019.125469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
The presence of the toxin cylindrospermopsin is increasingly frequent in samples from different ecosystems and it is a serious problem both at environmental level and for animal and human health. To be able to prevent CYN exposure risk, it is important to have suitable analytical methods, but also quick and economical ones. Analytical pyrolysis coupled to GC/MS (Py-GC/MS) represents an important alternative for the rapid detection, characterization or "fingerprinting" of different materials. However, it has been less studied with cyanotoxins up to date. The present work aims to investigate: 1) the suitability of Py-GC/MS for detection of CYN and its decomposition products in raw and cooked fish samples before consumption and 2) the influence of the different cooking methods on the presence of different CYN degradation products detected by Py-GC/MS. For first time, these results present that Py-GC/MS could be a rapid and economical alternative for the detection and monitoring of CYN and its degradation products (DP. m/z 290.1, 169.1 and 336.2) in raw or cooked fish. Moreover, the changes induced in CYN and DP by cooking could be amenable and detected by Py-GC/MS.
Collapse
Affiliation(s)
- Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - José Ma de la Rosa
- MOSS Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes, 10, 4012, Sevilla, Spain
| | - José A González-Pérez
- MOSS Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes, 10, 4012, Sevilla, Spain.
| |
Collapse
|
6
|
Llana-Ruiz-Cabello M, Jos A, Cameán A, Oliveira F, Barreiro A, Machado J, Azevedo J, Pinto E, Almeida A, Campos A, Vasconcelos V, Freitas M. Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia oleracea and Lactuca sativa. Toxins (Basel) 2019; 11:E624. [PMID: 31661886 PMCID: PMC6891636 DOI: 10.3390/toxins11110624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cyanobacteria and cyanotoxins constitute a serious environmental and human health problem. Moreover, concerns are raised with the use of contaminated water in agriculture and vegetable production as this can lead to food contamination and human exposure to toxins as well as impairment in crop development and productivity. The objective of this work was to assess the susceptibility of two green vegetables, spinach and lettuce, to the cyanotoxins microcystin (MC) and cylindrospermopsin (CYN), individually and in mixture. The study consisted of growing both vegetables in hydroponics, under controlled conditions, for 21 days in nutrient medium doped with MC or CYN at 10 μg/L and 50 μg/L, or CYN/MC mixture at 5 + 5 μg/L and 25 + 25 μg/L. Extracts from M. aeruginosa and C. ovalisporum were used as sources of toxins. The study revealed growth inhibition of the aerial part (Leaves) in both species when treated with 50µg/L of MC, CYN and CYN/MC mixture. MC showed to be more harmful to plant growth than CYN. Moreover spinach leaves growth was inhibited by both 5 + 5 and 25 + 25 µg/L CYN/MC mixtures, whereas lettuce leaves growth was inhibited only by 25 + 25 µg/L CYN/MC mixture. Overall, growth data evidence increased sensitivity of spinach to cyanotoxins in comparison to lettuce. On the other hand, plants exposed to CYN/MC mixture showed differential accumulation of CYN and MC. In addition, CYN, but not MC, was translocated from the roots to the leaves. CYN and MC affected the levels of minerals particularly in plant roots. The elements most affected were Ca, K and Mg. However, in leaves K was the mineral that was affected by exposure to cyanotoxins.
Collapse
Affiliation(s)
- Maria Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Ana Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Flavio Oliveira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Aldo Barreiro
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Joana Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Joana Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Edgar Pinto
- LAQV/REQUIMTE, Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Polytechnic Institute of Porto, Department of Environmental Health, School of Health, CISA/Research Center in Environment and Health, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal.
| | - Agostinho Almeida
- LAQV/REQUIMTE, Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Alexandre Campos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Marisa Freitas
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Polytechnic Institute of Porto, Department of Environmental Health, School of Health, CISA/Research Center in Environment and Health, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal.
| |
Collapse
|
7
|
Cătunescu GM, Troncoso AM, Jos A. Risk assessment methodologies in the field of contaminants, food contact materials, technological ingredients and nutritional risks. EFSA J 2019; 17:e170911. [PMID: 32626469 PMCID: PMC7015518 DOI: 10.2903/j.efsa.2019.e170911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The programme aimed at training the fellow in the risk assessment guidelines proposed by the EFSA in the field of contaminants, food contact materials, technological ingredients and nutritional risks. It had a modular 'learning by doing' approach and a balanced learning/case studies and theory. Module 1 offered an insight into chemical risk assessment and conferred transferable skills for a proper application of the framework. The hands-on activities consisted of three case studies that went from a simple exercise on an official opinion, to working in a team with experts to produce a new opinion, to an individual work to obtain a publishable review manuscript. Module 2 was a training in experimental toxicology designed to create a toxicological basis and to enable the fellow to perform toxicological studies for risk assessment purposes. She joined the team working on cyanotoxins, gained experience with both EFSA and Organization of Economic Cooperation and Development (OECD) guidelines on genotoxicity and an insight into the developing of analytical methods suitable for risk assessment purposes. During module 3, the fellow was trained in nutritional risk assessment and involved in experimental work in chemical characterisation, biomarkers and mechanisms of action of bioactive compounds. This developed the critical perspective when assessing nutritional and health claims related the design of experiments, methods used, interpretation of results and human relevance. Module 4 provided a 'hand-on experience' in scientific risk communication as the fellow was encouraged and supported in the participation at local, national and international workshops and congresses presenting the outcomes of the three modules. Thus, the fellow was successfully integrated in the day-by-day workflow of the department, gaining first-hand practical experience in risk assessment in a multicultural and interdisciplinary context. This enabled a productive exchange of good practices and contributed to building a European risk assessment community.
Collapse
|
8
|
Díez-Quijada L, Guzmán-Guillén R, Prieto Ortega AI, Llana-Ruíz-Cabello M, Campos A, Vasconcelos V, Jos Á, Cameán AM. New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS. Toxins (Basel) 2018; 10:E406. [PMID: 30297653 PMCID: PMC6215191 DOI: 10.3390/toxins10100406] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanotoxins are a large group of noxious metabolites with different chemical structure and mechanisms of action, with a worldwide distribution, producing effects in animals, humans, and crop plants. When cyanotoxin-contaminated waters are used for the irrigation of edible vegetables, humans can be in contact with these toxins through the food chain. In this work, a method for the simultaneous detection of Microcystin-LR (MC-LR), Microcystin-RR (MC-RR), Microcystin-YR (MC-YR), and Cylindrospermopsin (CYN) in lettuce has been optimized and validated, using a dual solid phase extraction (SPE) system for toxin extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for analysis. Results showed linear ranges (5⁻50 ng g-1 f.w.), low values for limit of detection (LOD) (0.06⁻0.42 ng g-1 f.w.), and limit of quantification (LOQ) (0.16⁻0.91 ng g-1 f.w.), acceptable recoveries (41⁻93%), and %RSDIP values for the four toxins. The method proved to be robust for the three variables tested. Finally, it was successfully applied to detect these cyanotoxins in edible vegetables exposed to cyanobacterial extracts under laboratory conditions, and it could be useful for monitoring these toxins in edible vegetables for better exposure estimation in terms of risk assessment.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - María Llana-Ruíz-Cabello
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Alexandre Campos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de leixões, Av General Norton de Matos, 4450-208 Matosinhos, Portugal.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de leixões, Av General Norton de Matos, 4450-208 Matosinhos, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
9
|
Maisanaba S, Guzmán-Guillén R, Valderrama R, Meca G, Font G, Jos Á, Cameán AM. Bioaccessibility and decomposition of cylindrospermopsin in vegetables matrices after the application of an in vitro digestion model. Food Chem Toxicol 2018; 120:164-171. [PMID: 29981788 DOI: 10.1016/j.fct.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 01/19/2023]
Abstract
Research on the human exposure to Cylindrospermopsin (CYN) via consumption of contaminated food is of great interest for risk assessment purposes. The aim of this work is to evaluate for the first time the CYN bioaccessibility in contaminated vegetables (uncooked lettuce and spinach, and boiled spinach) after an in vitro digestion model, including the salivar, gastric and duodenal phases and, colonic fermentation under lactic acid bacteria. The results obtained showed that the digestion processes are able to diminish CYN levels, mainly in the colonic phase, especially in combination with the boiling treatment, decreasing CYN levels in a significant way. Moreover, the potential decomposition products in a pure CYN solution and in CYN-contaminated vegetables were evaluated using UHPLC-MS/MS Orbitrap. Under the conditions assayed, only two diastereoisomers of the same fragment with m/z 292.09617 have been detected in all the analysed samples, with the exception of digested vegetables. Therefore, in terms of risk assessment, the digestion seems to play an important role in reducing the final bioaccesibility of CYN, and the consumption of cooked vegetables (spinach) would be safer in comparison to raw vegetables.
Collapse
Affiliation(s)
- Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | - Rocío Valderrama
- Mass Spectrometry Facility, Centro de Investigacion Tecnologica e Investigacion (CITIUS), University of Sevilla, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|