1
|
Zhao C, Zhang Z, Li J, Lu Y, Ma F, Wang Z, Geng J, Huang B, Qin Y. Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish. Toxins (Basel) 2024; 16:341. [PMID: 39195751 PMCID: PMC11360761 DOI: 10.3390/toxins16080341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Saxitoxin (STX), an exceptionally potent marine toxin for which no antidote is currently available, is produced by methanogens and cyanobacteria. This poses a significant threat to both shellfish aquaculture and human health. Consequently, the development of a rapid, highly sensitive STX detection method is of great significance. The objective of this research is to create a novel approach for identifying STX. Therefore, amplified luminescent proximity homogeneous assay (AlphaLISA) was established using a direct competition method based on the principles of fluorescence resonance energy transfer and antigen-antibody specific binding. This method is sensitive, rapid, performed without washing, easy to operate, and can detect 8-128 ng/mL of STX in only 10 min. The limit of detection achieved by this method is as low as 4.29 ng/mL with coefficients of variation for the intra-batch and inter-batch analyses ranging from 2.61% to 3.63% and from 7.67% to 8.30%, respectively. In conclusion, our study successfully establishes a simple yet sensitive, rapid, and accurate AlphaLISA method for the detection of STX which holds great potential in advancing research on marine biotoxins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (Z.Z.); (J.L.); (Y.L.); (Z.W.); (J.G.)
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (Z.Z.); (J.L.); (Y.L.); (Z.W.); (J.G.)
| |
Collapse
|
2
|
Tam CC, Du WX, Wang Y, Flannery AR, He X. Rapid and Sensitive Detection of Shiga Toxin-Producing Escherichia coli (STEC) from Food Matrices Using the CANARY Biosensor Assay. Toxins (Basel) 2024; 16:325. [PMID: 39057965 PMCID: PMC11281303 DOI: 10.3390/toxins16070325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes a wide spectrum of diseases including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Previously, we developed a rapid, sensitive, and potentially portable assay that identified STEC by detecting Shiga toxin (Stx) using a B-cell based biosensor platform. We applied this assay to detect Stx2 present in food samples that have been implicated in previous STEC foodborne outbreaks (milk, lettuce, and beef). The STEC enrichment medium, modified Tryptone Soy Broth (mTSB), inhibited the biosensor assay, but dilution with the assay buffer relieved this effect. Results with Stx2a toxoid-spiked food samples indicated an estimated limit of detection (LOD) of ≈4 ng/mL. When this assay was applied to food samples inoculated with STEC, it was able to detect 0.4 CFU/g or 0.4 CFU/mL of STEC at 16 h post incubation (hpi) in an enrichment medium containing mitomycin C. Importantly, this assay was even able to detect STEC strains that were high expressors of Stx2 at 8 hpi. These results indicate that the STEC CANARY biosensor assay is a rapid and sensitive assay applicable for detection of STEC contamination in food with minimal sample processing that can complement the current Food Safety Inspection Service (US) methodologies for STEC.
Collapse
Affiliation(s)
- Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| | - Wen-Xian Du
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| | - Yangyang Wang
- Smiths Detection, 2202 Lakeside Blvd, Edgewood, MD 21040, USA; (Y.W.); (A.R.F.)
| | - Andrew R. Flannery
- Smiths Detection, 2202 Lakeside Blvd, Edgewood, MD 21040, USA; (Y.W.); (A.R.F.)
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; (C.C.T.); (W.-X.D.)
| |
Collapse
|
3
|
Fu Y, Sun D, Qin Y, Zheng T, Zhou Z, Zhou X, Zhao X, Xu Y, Huang B. Development and application of an amplified luminescent proximity homogeneous assay-linked immunosorbent assay for the accurate quantification of kidney injury molecule-1. Front Mol Biosci 2024; 10:1280681. [PMID: 38304229 PMCID: PMC10832993 DOI: 10.3389/fmolb.2023.1280681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
Background: Kidney injury molecule-1 (Kim-1), a specific marker of kidney injury, is usually not expressed in normal kidneys or at very low levels but is highly expressed in injured renal tubular epithelial cells until the damaged cells recover completely. Therefore, we aimed to develop an efficient and highly sensitive assay to accurately quantify Kim-1 levels in human serum and urine. Methods: In this study, a novel immunoassay was developed and named amplified luminescent proximity homogeneous assay-linked immunosorbent assay (AlphaLISA). Anti-Kim-1 antibodies can be directly coupled to carboxyl-modified donor and acceptor beads for the rapid detection of Kim-1 by double-antibody sandwich method. Serum and urine samples for Kim-1 measurements were obtained from 129 patients with nephropathy and 17 healthy individuals. Results: The linear range of Kim-1 detected by AlphaLISA was 3.83-5000 pg/mL, the coefficients of variation of intra-assay and inter-assay batches were 3.36%-4.71% and 5.61%-11.84%, respectively, and the recovery rate was 92.31%-99.58%. No cross reactions with neutrophil gelatinase-associated lipocalin, liver-type fatty acid binding protein, and matrix metalloproteinase-3 were observed. A good correlation (R 2 = 0.9086) was found between the findings of Kim-1-TRFIA and Kim-AlphaLISA for the same set of samples. In clinical trials, both serum and urine Kim-1 levels were significantly higher in patients with nephropathy than in healthy individuals, especially in patients with acute kidney injury. Furthermore, serum Kim-1 was superior to urinary Kim-1 in distinguishing between patients with nephropathy and healthy individuals. Conclusion: The developed Kim-1-AlphaLISA is highly efficient, precise, and sensitive, and it is suitable for the rapid detection of patients with acute kidney injury.
Collapse
Affiliation(s)
- Yulin Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Danqin Sun
- Department of Nephrology, Jiangnan University Medicine Center, Wuxi, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tianyu Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zixuan Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Xu
- Department of Nephrology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Qin Y, Li J, Kuang J, Shen S, Zhou X, Zhao X, Huang B, Han B. Okadaic Acid Detection through a Rapid and Sensitive Amplified Luminescent Proximity Homogeneous Assay. Toxins (Basel) 2023; 15:501. [PMID: 37624258 PMCID: PMC10467062 DOI: 10.3390/toxins15080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Okadaic acid (OA), a marine biotoxin produced by microalgae, poses a significant threat to mariculture, seafood safety, and human health. The establishment of a novel, highly sensitive detection method for OA would have significant practical and scientific implications. Therefore, the purpose of this study was to develop an innovative approach for OA detection. A competitive amplified luminescent proximity homogeneous assay (AlphaLISA) was developed using the principle of specific antigen-antibody binding based on the energy transfer between chemiluminescent microspheres. The method was non-washable, sensitive, and rapid, which could detect 2 × 10-2-200 ng/mL of OA within 15 min, and the detection limit was 4.55 × 10-3 ng/mL. The average intra- and inter-assay coefficients of variation were 2.54% and 6.26%, respectively. Detection of the actual sample results exhibited a good correlation with high-performance liquid chromatography. In conclusion, a simple, rapid, sensitive, and accurate AlphaLISA method was established for detecting OA and is expected to significantly contribute to marine biotoxin research.
Collapse
Affiliation(s)
- Yuan Qin
- Correspondence: (Y.Q.); (B.H.); (B.H.)
| | | | | | | | | | | | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; (J.L.); (J.K.); (S.S.); (X.Z.); (X.Z.)
| | - Bingnan Han
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; (J.L.); (J.K.); (S.S.); (X.Z.); (X.Z.)
| |
Collapse
|
5
|
Chen J, Fu B, Xiang Z, Chen X, Wang L, Qin Y, Zhao X, Zhou X, Liu P, Huang B. Sensitive amplified luminescent proximity homogeneous assay for the quantitative detection of CA242. J Immunol Methods 2023; 517:113487. [PMID: 37156407 DOI: 10.1016/j.jim.2023.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
We here developed a sensitive and stable amplified luminescent proximity homogeneous assay (AlphaLISA) method for fast quantification of CA242 in human serum. Donor and acceptor beads modified with carboxyl groups could be coupled with CA242 antibodies after activation in the AlphaLISA method. CA242 was rapidly detected by the double antibody sandwich immunoassay. The method yielded good linearity (>0.996) and detection range (0.16-400 U/mL). The intra-assay precisions of CA242-AlphaLISA were between 3.43% and 6.81% (< 10%), and the inter-assay precisions were between 4.06% and 9.56% (< 15%). The relative recoveries ranged from 89.61% to 107.29%. Detection time for the CA242-AlphaLISA method was only 20 min. Moreover, results of CA242-AlphaLISA and time-resolved fluorescence immunoassay had satisfactory correlation and consistency (ρ = 0.9852). The method was successfully applied to the analysis of human serum samples. Meanwhile, serum CA242 has a good detection value in the identification and diagnosis of pancreatic cancer and the monitoring of disease degree. Furthermore, the proposed AlphaLISA method is expected to be an alternative to traditional detection methods, laying a good foundation for the further development of kits to detect other biomarkers in future studies.
Collapse
Affiliation(s)
- Jianye Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Benqi Fu
- Sichuan Friendship Hospital, Chengdu, China
| | - Zhongyi Xiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xindong Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lu Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Pengfei Liu
- Department of Gastroenterology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, People's Republic of China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
6
|
Zong H, Zhang S, Shang X, Jiang H, Zhao Z, Chen S, Wang X, Wang Y, Jiang Y, Li X, Tan L, Liu P, Lv Q, Li Y. Development of an AlphaLISA assay for sensitive and accurate detection of influenza B virus. Front Med (Lausanne) 2023; 10:1155551. [PMID: 37215702 PMCID: PMC10196263 DOI: 10.3389/fmed.2023.1155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Objective Influenza B virus (IBV) is highly contagious, spreads rapidly, and causes seasonal epidemic respiratory disease in the human population, especially in immunocompromised people and young children. Clinical manifestations in this high-risk population are often more severe than in immunocompetent hosts and sometimes atypical. Therefore, rapid, and accurate detection of IBV is important. Methods An amplified luminescent proximity homogeneous assay linked immunosorbent assay (AlphaLISA) was developed for detection of IBV by optimizing the ratio of IBV antibody-labeled receptor beads, streptavidin-conjugated donor beads and biotinylated IBV antibody, as well as the optimal temperature and time conditions for incubation. Assay sensitivity, specificity and reproducibility were evaluated. A total of 228 throat swab samples and inactivated influenza B virus were tested by AlphaLISA and lateral flow colloidal gold-based immunoassay (LFIA). Results AlphaLISA produced the best results for detection of inactivated influenza B virus when IBV antibody-labeled acceptor beads were 50 μg/ mL, streptavidin-conjugated donor beads were 40 μg/mL, and biotinylated IBV antibody was 0.5 μg/mL at 37°C for 15-10 min. Under these conditions, AlphaLISA had a limit of detection of 0.24 ng/mL for the detection of influenza B nucleoprotein, did not cross react with other common respiratory viruses, and showed good reproducibility with inter-assay coefficient of variation (CV) and intra-assay CV < 5%. The results of 228 clinical throat swab samples showed good agreement between AlphaLISA and LFIA (Kappa = 0.982), and AlphaLISA showed better sensitivity than LFIA for detecting inactivated influenza B virus. Conclusion AlphaLISA showed higher sensitivity and throughput in the detection of IBV and can be used for IBV diagnosis and epidemic control.
Collapse
Affiliation(s)
- Huijun Zong
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shengwei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xueyi Shang
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Wang
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ye Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xinyu Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Lingyun Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yan Li
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Development of amplified luminescent proximity homogeneous assay for quantitation of gastrin-17. Anal Biochem 2023; 662:115016. [PMID: 36502889 DOI: 10.1016/j.ab.2022.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
A highly sensitive and convenient amplified luminescent proximity homogeneous assay (AlphaLISA) method with high throughput and automation potential was developed for quantitation of serum Gastrin-17 (G-17) levels, which can facilitate the early diagnosis of atrophic gastritis in people at high risk of gastric cancer using a non-invasive approach. In this study, donor and acceptor beads with modified carboxyl groups on the surface were directly coupled to anti-G-17 antibodies through activation was proposed for application in the development of the new AlphaLISA, which can effectively simplify the steps and shorten the reaction time to achieve faster detection. Therefore, the G-17-AlphaLISA only needs to react for 15 min to obtain good analysis results. The proposed method has a wider detection range than commercial enzyme-linked immunosorbent assay (ELISA) kits (0.12-112.8 pmol/L > 0.5-40 pmol/L). In addition, results of G-17-AlphaLISA and ELISA had good correlation and agreement (ρ = 0.936). Importantly, the developed method may be more suitable for the large-scale screening of people at high risk for gastric cancer than traditional ELISA and provides a novel solution for other biomarkers that require accurate, highly sensitive, and high throughput detection.
Collapse
|
8
|
Chen J, Xiao P, Song D, Song D, Chen Z, Li H. Growth stimulation expressed gene 2 (ST2): Clinical research and application in the cardiovascular related diseases. Front Cardiovasc Med 2022; 9:1007450. [PMID: 36407452 PMCID: PMC9671940 DOI: 10.3389/fcvm.2022.1007450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
As an interleukin (IL)-1 receptor family member, scientists found that when circulating soluble growth stimulation expressed gene 2 (sST2) is low, its ligand, IL-33, will bind to ST2L to exert protective effects on various types of cells. On the other hand, competitive binding of IL-33 occurs when sST2 concentrations are increased, followed by a reduction in the amount available for cell protection. Based on this mechanism, the usage of sST2 is to identify the population of high-risk patients with cardiovascular disease. In recent years, the role of serum sST2 in the occurrence, diagnosis, prognosis, and treatment of cardiovascular diseases has been gradually accepted by doctors. This manuscript systemically reviews the biological functions and applications of sST2 in disease diagnosis and treatment, especially for cardiovascular diseases. In clinical testing, since IL-33 can negatively impact sST2 measurement accuracy, the properties of current assay kits have been summarized and discussed to provide a clear view of the clinical chemistry results. Although sST2 is a promising biomarker, there are few quantitative approaches available for clinical testing. In this context, a mass spectrometry (MS)-based approach might be an option, as this is a powerful analytical tool to distinguish structurally related molecules in the matrix and decrease false-positive results in clinical testing. Moreover, approaches developed based on MS would be an ideal way to further study sST2 standardization.
Collapse
Affiliation(s)
- Jinchao Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- *Correspondence: Peng Xiao,
| | - Dan Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Dewei Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- Hongmei Li,
| |
Collapse
|
9
|
Xiang Z, Chen X, Zhou X, Qin Y, Zhao X, Wang Y, Li Q, Huang B. Development and application of a novel aldehyde nanoparticle-based amplified luminescent proximity homogeneous assay for rapid quantitation of pancreatic stone protein. Clin Chim Acta 2022; 535:120-130. [PMID: 36030885 DOI: 10.1016/j.cca.2022.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Timely diagnosis of bacterial infections is important to prevent sepsis. Classical infection biomarkers have some flaws, and common detection methods are time-consuming. Thus, we aimed to establish an efficient detection method that precisely detects pancreatic stone protein (PSP) in human plasma for the timely diagnosis of bacterial infections. METHODS Based on the novel amplified luminescent proximity homogeneous assay (AlphaLISA) method, donor and acceptor beads modified with aldehyde groups were directly coupled to the anti-PSP antibodies. PSP was quickly detected by a double-antibody sandwich method. Plasma samples from healthy individuals, bacterially infected patients, and acute-phase response patients were tested. RESULTS The detection time of the developed method is only 5 min. The results of PSP-AlphaLISA and time-resolved fluorescence were consistent (ρ = 0.9722). The plasma PSP levels of patients with bacterial infection were significantly higher than those of acute-phase response patients and healthy individuals (P < 0.05). PSP levels in patients with bacterial infection with sepsis were significantly higher than those in patients with bacterial infection without sepsis (P < 0.05). CONCLUSIONS The PSP-AlphaLISA exhibited excellent performance and may be applied to the differential diagnosis between bacterial infection and sepsis in patients without interference from patients with acute-phase response.
Collapse
Affiliation(s)
- Zhongyi Xiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xindong Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qian Li
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
10
|
Xiang Z, Zhang Z, Chen X, Zhang L, Zhou X, Qin Y, Zhao X, Wang Y, Huang B, Tang H. Development and application of amplified luminescent proximity homogeneous assay for quantitation of heparin-binding protein. Anal Biochem 2022; 657:114906. [PMID: 36152874 DOI: 10.1016/j.ab.2022.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
A fast and highly sensitive amplified luminescent proximity homogeneous assay (AlphaLISA) method was developed for quantitation of plasma heparin-binding protein levels. In this study, a method directly coupling donor and acceptor beads modified with aldehyde groups to anti-HBP antibodies was proposed, which can effectively simplify the steps and shorten the reaction time to achieve faster detection. Therefore, the developed method required only 15 min of reaction time to generate results. Compared with the approved commercial kit, the developed method had a wider linear range (2.78-500 ng/mL). The excellent linear range means that the method can better exploit the value of HBP in clinical applications. Meanwhile, results of amplified luminescent proximity homogeneous assay and fluorescence dry quantitative immunoassay had good correlation and consistency (ρ = 0.9181). Moreover, the plasma HBP concentrations of patients with bacterial infection were significantly higher than those of healthy individuals (P < 0.0001), indicating the potential applicability of the proposed method for predicting the incidence of bacterial infections. Importantly, the newly developed method is expected to serve as an alternative to the traditional assay method and provides a completely new platform for other biomarkers that require rapid detection.
Collapse
Affiliation(s)
- Zhongyi Xiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhibin Zhang
- Clinical Laboratory, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Xindong Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lele Zhang
- Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Huqiang Tang
- Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, China.
| |
Collapse
|
11
|
Eppinger M, Almería S, Allué-Guardia A, Bagi LK, Kalalah AA, Gurtler JB, Fratamico PM. Genome Sequence Analysis and Characterization of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains Associated With a Laboratory Infection. Front Cell Infect Microbiol 2022; 12:888568. [PMID: 35770066 PMCID: PMC9234449 DOI: 10.3389/fcimb.2022.888568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sonia Almería
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States
| | - Lori K Bagi
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anwar A Kalalah
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Joshua B Gurtler
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Pina M Fratamico
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
12
|
Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Chen J, Tian W, Yun Y, Tian Y, Sun C, Ding R, Chen H. A discussion on the affecting factors of the fitting procedures' reliability in isothermal titration calorimetry analysis. Arch Biochem Biophys 2021; 713:109045. [PMID: 34627750 DOI: 10.1016/j.abb.2021.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
The standard isothermal titration calorimetry (ITC) curve, characterized as a typical sigmoid is strictly confined by the so-called c value, which is a ratio of titrand concentration to KD. The proper c value with a range from 5 to 500 is commonly recommended as a standard protocol in routine detection process for acquiring the reliable fitting results in 1:1 binding mode. However, if the c value is less than "1" due to the weak binding or low concentration of analyte, fitting precision gets unstable and susceptible to the data noise. Herein, we first got a deep discussion into the reliability of the fitting procedure for 1:1 binding mode by data simulation, then quantized the effect of several affecting factors on the precision of parameters estimation through mathematical analysis. Finally, we proposed the value of 2~4 times KD for final ligand concentration is optimal for the ITC titration in low c system (c < 1). All the theoretical derivations were further verified by a practical experiment of Magnesium-EDTA binding test.
Collapse
Affiliation(s)
- Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China; Core Facility of Biomedical Sciences, Xiamen University, Xiamen 361001, PR China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China
| | - Ye Yun
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China; Core Facility of Biomedical Sciences, Xiamen University, Xiamen 361001, PR China
| | - Yingpu Tian
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China; Core Facility of Biomedical Sciences, Xiamen University, Xiamen 361001, PR China
| | - Cuiling Sun
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China; Core Facility of Biomedical Sciences, Xiamen University, Xiamen 361001, PR China
| | - Rong Ding
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China; Core Facility of Biomedical Sciences, Xiamen University, Xiamen 361001, PR China
| | - Haifeng Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361001, PR China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen 361001, PR China; Core Facility of Biomedical Sciences, Xiamen University, Xiamen 361001, PR China.
| |
Collapse
|
14
|
Jin Y, He Y, Zhao D, Chen Y, Xue Q, Zou M, Yin H, Xing S. Development of an amplified luminescent proximity homogeneous assay for the detection of sulfonamides in animal-derived products. Food Sci Nutr 2021; 9:4938-4945. [PMID: 34532005 PMCID: PMC8441374 DOI: 10.1002/fsn3.2443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we carried out an amplified luminescent proximity homogeneous assay (AlphaLISA) to detect sulfonamides (SAs) antibiotic residues in plasma, milk, pork, chicken, and fish. The SAs AlphaLISA method can detect 13 SAs with half-inhibitory concentration (IC50) 2.11-29.77 ng/ml. The detection level of those SAs was 0.3-41.12 ng/ml in matrices, which satisfied the maximum residue limit (MRL) of the European Union, United States, and China. Our recoveries are in the range of 88% to 116.8% with a coefficient of variation less than 9.3% for different spiked food samples. We observed a good correlation between the AlphaLISA and liquid chromatography-tandem mass spectrometry (LC-MS/MS) with blood samples from injected rabbits. The established AlphaLISA method provided a no-washing, rapid, high-throughput screening tool for SAs in food quality control, which is suitable for small-volume samples.
Collapse
Affiliation(s)
- Yong Jin
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Yanping He
- Chinese Academy of Inspection and QuarantineBeijingChina
- Anhui Normal UniversityWuhuChina
| | - Dali Zhao
- Jilin International Travel Health Care Center (Changchun Customs Port Clinic)ChangchunChina
| | - Yan Chen
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Qiang Xue
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Mingqiang Zou
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Hong Yin
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Shige Xing
- Chinese Academy of Inspection and QuarantineBeijingChina
| |
Collapse
|
15
|
Nakamura K, Tokuda C, Arimitsu H, Etoh Y, Hamasaki M, Deguchi Y, Taniguchi I, Gotoh Y, Ogura Y, Hayashi T. Development of a homogeneous time-resolved FRET (HTRF) assay for the quantification of Shiga toxin 2 produced by E. coli. PeerJ 2021; 9:e11871. [PMID: 34395095 PMCID: PMC8325423 DOI: 10.7717/peerj.11871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major intestinal pathogen and causes serious gastrointestinal illness, which includes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome. The major virulence factors of STEC are Shiga toxins (Stx1 and Stx2), which belong to the AB-type toxin family. Among several subtypes of Stx1 and Stx2, the production of Stx2a is thought to be a risk factor for severe STEC infections, but Stx2a production levels vary markedly between STEC strains, even strains with the same serotype. Therefore, quantitative analyses of Stx2 production by STEC strains are important to understand the virulence potential of specific lineages or sublineages. In this study, we developed a novel Stx2 quantification method by utilizing homogeneous time-resolved fluorescence resonance energy transfer (HTRF) technology. To determine suitable “sandwich” assay conditions, we tested 6 combinations of fluorescence-labeled monoclonal antibodies (mAbs) specific to Stx2 and compared the HTRF signal intensities obtained at various incubation times. Through this analysis, we selected the most suitable mAb pair, one recognizing the A subunit and the other recognizing the B subunit, thus together detecting Stx holotoxins. The optimal incubation time was also determined (18 h). Then, we optimized the concentrations of the two mAbs based on the range for linearity. The established HTRF assay detected 0.5 ng/ml of the highly purified recombinant Stx2a and Stx2e proteins and the working range was 1–64 ng/ml for both Stx2a and Stx2e. Through the quantification analysis of Stx proteins in STEC cell lysates, we confirmed that other Stx2 subtypes (Stx2b, Stx2c, Stx2d and Stx2g) can also be quantified at a certain level of accuracy, while this assay system does not detect Stx2f, which is highly divergent in sequence from other Stx2 subtypes, and Stx1. As the HTRF protocol we established is simple, this assay system should prove useful for the quantitative analysis of Stx2 production levels of a large number of STEC strains.
Collapse
Affiliation(s)
- Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hideyuki Arimitsu
- School of Human Science and Environment, University of Hyogo, Himeji, Japan
| | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Yuichiro Deguchi
- Production Medicine Center, Agricultural Mutual Aid Association in Miyazaki Prefecture, Koyugun-Shintomicho, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Fletcher MT, Netzel G. Food Safety and Natural Toxins. Toxins (Basel) 2020; 12:toxins12040236. [PMID: 32276351 PMCID: PMC7232292 DOI: 10.3390/toxins12040236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022] Open
|
17
|
Wang HB, Du T, Li WG, Zhao JH, Yang Z, Mo QH. The establishment and clinical evaluation of a novel, rapid, no-wash one-step immunoassay for the detection of dengue virus non-structural protein 1. J Virol Methods 2019; 276:113793. [PMID: 31794781 DOI: 10.1016/j.jviromet.2019.113793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
Dengue fever is a highly endemic arthropod-borne viral disease in the tropical and sub-tropical countries and is rapidly becoming a global threaten. Diagnosis has been conducted by either traditional serological methods or molecular biological techniques. However, these methods are either labor-intensive, time-consuming or with multiple steps, which are not suitable for high throughput detection of large quantity of samples. In the current study, a novel, rapid, no-wash one-step amplified luminescent proximity homogenous assay-linked immunosorbent assay (AlphaLISA) was developed and optimized for the diagnosis of dengue fever through the detection of dengue virus non-structural protein 1 (NS1). The linear range of the assay was determined to be 60,000 pg/mL to 200 pg/mL, with a lower detection limit of 127.45 pg/mL for NS1 protein. The precision of the assay was 8.24 % and 4.93 % for the high and low concentration. Clinical evaluation indicated that the sensitivity and specificity of the assay was 91.49 % and 81.54 %, respectively. This novel, rapid, no-wash one-step AlphaLISA assay is convenient and sensitive, which could be a good alternative for the screening of dengue fever in a high throughput format.
Collapse
Affiliation(s)
- Hai-Bo Wang
- Key Laboratory of Emerging Infectious Disease Detection, Zhuhai International Travel Healthcare Center, Gongbei Customs District, Zhuhai 519020, Guangdong, China
| | - Tian Du
- Futian District Center for Disease Prevention and Control, Shenzhen 518040, Guangdong, China
| | - Wei-Gang Li
- Key Laboratory of Emerging Infectious Disease Detection, Zhuhai International Travel Healthcare Center, Gongbei Customs District, Zhuhai 519020, Guangdong, China
| | - Jun-Hua Zhao
- Key Laboratory of Emerging Infectious Disease Detection, Zhuhai International Travel Healthcare Center, Gongbei Customs District, Zhuhai 519020, Guangdong, China
| | - Ze Yang
- Key Laboratory of Emerging Infectious Disease Detection, Zhuhai International Travel Healthcare Center, Gongbei Customs District, Zhuhai 519020, Guangdong, China
| | - Qiu-Hua Mo
- Key Laboratory of Emerging Infectious Disease Detection, Zhuhai International Travel Healthcare Center, Gongbei Customs District, Zhuhai 519020, Guangdong, China.
| |
Collapse
|
18
|
Zhao J, Lv Q, Liu P, Guo L, Zhang L, Zheng Y, Ming L, Kong D, Jiang H, Jiang Y. AlphaLISA for detection of staphylococcal enterotoxin B free from interference by protein A. Toxicon 2019; 165:62-68. [DOI: 10.1016/j.toxicon.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 01/15/2023]
|
19
|
To CZ, Bhunia AK. Three Dimensional Vero Cell-Platform for Rapid and Sensitive Screening of Shiga-Toxin Producing Escherichia coli. Front Microbiol 2019; 10:949. [PMID: 31134009 PMCID: PMC6514307 DOI: 10.3389/fmicb.2019.00949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is a serious public health concern. Current Vero cell assay, although sensitive, is lengthy and requires 48-72 h to assess STEC presence in a sample. In this study, we investigated if Vero cells in a three-dimensional (3D) platform would provide improved sensitivity for rapid screening of STEC. Vero cells (epithelial kidney cell line) were grown as a monolayer (2D) or in a collagen-matrix (3D) and exposed to Shiga-toxin (Stx) preparation or STEC cells that were pre-exposed to antibiotics (mitomycin C, ciprofloxacin, or polymyxin B) for toxin induction. Lactate dehydrogenase (LDH) release from Vero cells was used as a biomarker for cytotoxicity. Modified tryptic soy broth (mTSB) as enrichment broth containing mitomycin C (2 μg/ml) or ciprofloxacin (100 ng/ml) significantly induced Stx production, which was further confirmed by the dot-immunoblot assay. The 3D Vero platform detected STEC after 6 h post-infection with cytotoxicity values ranging from 33 to 79%, which is considerably faster than the traditional 2D platform, when tested with STEC. The cytotoxicity for non-Stx producing bacteria, Salmonella, Listeria, Citrobacter, Serratia, and Hafnia was found to be below the cytotoxicity cutoff value of 15%. The detection limit for the 3D Vero cell assay was estimated to be 107 CFU/ml for bacteria and about 32 ng/ml for Stx in 6 h. STEC-inoculated ground beef samples (n = 27) resulted in 38-46% cytotoxicity, and the bacterial isolates (n = 42) from ground beef samples were further confirmed to be stx1 and stx2 positive in a multiplex PCR yielding a very low false-positive result. This 3D cell-based screening assay relies on mammalian cell pathogen interaction that can complement other molecular techniques for the detection of cell-free Stx or STEC cells from food samples for early detection and prevention.
Collapse
Affiliation(s)
- Celina Z. To
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|