1
|
Janaviciene S, Venslovas E, Kadziene G, Matelioniene N, Berzina Z, Bartkevics V, Suproniene S. Diversity of Mycotoxins Produced by Fusarium Strains Infecting Weeds. Toxins (Basel) 2023; 15:420. [PMID: 37505689 PMCID: PMC10467119 DOI: 10.3390/toxins15070420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Although Fusarium is mainly known as an agricultural pathogen that affects monocotyledonous plants, it can also infect different species of weeds in the agricultural environment, thereby contributing to the production of mycotoxins in cereals. In this study, we present new developmental data on the diversity of mycotoxins produced by Fusarium graminearum and Fusarium avenaceum strains from weeds under field conditions. Regarding the potential for the strain dependence of mycotoxin production, this study demonstrated that all F. graminearum strains isolated from weeds and spring wheat showed high potential for deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), and nivalenol (NIV) production in spring wheat under field conditions. It was determined that F. graminearum is a typical producer of B-type trichothecenes. All strains of F. avenaceum isolated from spring wheat and weeds have the potential to produce enniatins and moniliformin in spring wheat. Each type of weed can host different Fusarium species and strains that produce completely different mycotoxins. Therefore, the distribution of mycotoxins in spring wheat grain may depend more on the Fusarium species or strains that infect the weeds than on the pathogen's host plant species. The predominance of specific mycotoxins in cereals depends on the year's weather conditions and the diversity of Fusarium species present in the field.
Collapse
Affiliation(s)
- Sigita Janaviciene
- Department of Plant Pathology and Protection, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Eimantas Venslovas
- Department of Plant Pathology and Protection, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Grazina Kadziene
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Neringa Matelioniene
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Zane Berzina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (Z.B.); (V.B.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (Z.B.); (V.B.)
| | - Skaidre Suproniene
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| |
Collapse
|
3
|
Trichothecene Genotype Profiling of Wheat Fusarium graminearum Species Complex in Paraguay. Toxins (Basel) 2022; 14:toxins14040257. [PMID: 35448866 PMCID: PMC9028958 DOI: 10.3390/toxins14040257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Paraguay is a non-traditional wheat-producing country in one of the warmest regions in South America. Fusarium Head Blight (FHB) is a critical disease affecting this crop, caused by the Fusarium graminearum species complex (FGSC). A variety of these species produce trichothecenes, including deoxynivalenol (DON) and its acetylated forms (3-ADON and 15-ADON) or nivalenol (NIV). This study characterized the phylogenetic relationships, and chemotype diversity of 28 strains within FGSC collected from wheat fields across different country regions. Phylogenetic analysis based on the sequence of elongation factor-1α gene (EF-1α) from 28 strains revealed the presence of four species in the FGSC: F. graminearum sensu stricto, F. asiaticum, F. meridionale and F. cortaderiae. Ten strains selected for further analysis revealed that all F. graminearum strains were 15-ADON chemotype, while the two strains of F. meridionale and one strain of F. asiaticum were NIV chemotype. Thus, the 15-ADON chemotype of F. graminearum sensu stricto was predominant within the Fusarium strains isolated in the country. This work is the first report of phylogenetic relationships and chemotype diversity among Fusarium strains which will help understand the population diversity of this pathogen in Paraguay.
Collapse
|
4
|
Yang S, Cai W, Shen L, Wu R, Cao J, Tang W, Lu Q, Huang Y, Guan D, He S. Solanaceous plants switch to cytokinin-mediated immunity against Ralstonia solanacearum under high temperature and high humidity. PLANT, CELL & ENVIRONMENT 2022; 45:459-478. [PMID: 34778967 DOI: 10.1111/pce.14222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Plant diseases generally tend to be more serious under conditions of high temperature and high humidity (HTHH) than under ambient temperature, but plant immunity against pathogen attacks under HTHH remains elusive. Herein, we used pepper as an example to study how Solanaceae cope with Ralstonia solanacearum infection (RSI) under HTHH by performing RNA-seq combined with the reverse genetic method. The result showed that immunities mediated by salicylic acid (SA) and jasmonic acid (JA) in pepper roots were activated by RSI under ambient temperature. However, upon RSI under HTHH, JA signalling was blocked and SA signalling was activated early but its duration was greatly shortened in pepper roots, instead, expression of CaIPT5 and Glutathione S-transferase encoding genes, as well as endogenous content of trans-Zeatin, were enhanced. In addition, by silencing in pepper plants and overexpression in Nicotiana benthamiana, CaIPT5 was found to act positively in the immune response to RSI under HTHH in a way related to CaPRP1 and CaMgst3. Furthermore, the susceptibility of pepper, tomato and tobacco to RSI under HTHH was significantly reduced by exogenously applied tZ, but not by either SA or MeJA. All these data collectively suggest that pepper employs cytokinin-mediated immunity to cope with RSI under HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Ruijie Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jianshen Cao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiqi Tang
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
6
|
Kostić AŽ, Milinčić DD, Petrović TS, Krnjaja VS, Stanojević SP, Barać MB, Tešić ŽL, Pešić MB. Mycotoxins and Mycotoxin Producing Fungi in Pollen: Review. Toxins (Basel) 2019; 11:E64. [PMID: 30678361 PMCID: PMC6409990 DOI: 10.3390/toxins11020064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
Abstract
Due to its divergent chemical composition and good nutritional properties, pollen is not only important as a potential food supplement but also as a good substrate for the development of different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as they can synthesize mycotoxins as a part of their metabolic pathways. Furthermore, favorable conditions that enable the synthesis of mycotoxins (adequate temperature, relative humidity, pH, and aw values) are found frequently during pollen collection and/or production process. Internationally, several different mycotoxins have been identified in pollen samples, with a noted predominance of aflatoxins, ochratoxins, fumonisins, zearalenone, deoxynivalenol, and T-2 toxin. Mycotoxins are, generally speaking, extremely harmful for humans and other mammals. Current EU legislation contains guidelines on the permissible content of this group of compounds, but without information pertaining to the content of mycotoxins in pollen. Currently only aflatoxins have been researched and discussed in the literature in regard to proposed limits. Therefore, the aim of this review is to give information about the presence of different mycotoxins in pollen samples collected all around the world, to propose possible aflatoxin contamination pathways, and to emphasize the importance of a regular mycotoxicological analysis of pollen. Furthermore, a suggestion is made regarding the legal regulation of pollen as a food supplement and the proposed tolerable limits for other mycotoxins.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Danijel D Milinčić
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Tanja S Petrović
- Preservation and Fermentation, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Vesna S Krnjaja
- Institute for Animal Husbandry, Autoput 16, 11080 Belgrade, Serbia.
| | - Sladjana P Stanojević
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Miroljub B Barać
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Živoslav Lj Tešić
- Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia.
| | - Mirjana B Pešić
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| |
Collapse
|