1
|
Wang D, Zhu J, Zhang Z, Zhang Q, Zhang W, Yu L, Jiang J, Chen X, Wang X, Li P. Simultaneous Lateral Flow Immunoassay for Multi-Class Chemical Contaminants in Maize and Peanut with One-Stop Sample Preparation. Toxins (Basel) 2019; 11:E56. [PMID: 30669515 PMCID: PMC6356774 DOI: 10.3390/toxins11010056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
Multi-class chemical contaminants, such as pesticides and mycotoxins, are recognized as the major risk factors in agro products. It is thus necessary to develop rapid and simple sensing methods to fulfill the on-site monitoring of multi-class chemical contaminants with different physicochemical properties. Herein, a lateral flow immunoassay via time-resolved fluorescence was developed for the rapid, on-site, simultaneous, and quantitative sensing aflatoxin B₁ (AFB₁), zearalenone (ZEA), and chlorothalonil (CTN) in maize and peanut. The sample preparation was optimized to a single step, combining the grinding and extraction. Under optimal conditions, the sensing method lowered the limits of detection (LOD) to 0.16, 0.52, and 1.21 µg/kg in maize and 0.18, 0.57, and 1.47 µg/kg in peanut with an analytical range of 0.48⁻20, 1.56⁻200, and 3.63⁻300 µg/kg for AFB₁, ZEA and CTN, respectively. The protocol could be completed within 15 min, including sample preparation and lateral flow immunoassay. The recovery range was 83.24⁻110.80%. An excellent correlation was observed between this approach and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for mycotoxins and gas chromatography-tandem mass spectrometry (GC-MS/MS) for pesticide in maize and peanut. This work could be applied in on-site multi-class sensing for food safety.
Collapse
Affiliation(s)
- Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Jianguo Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Jun Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Xiaomei Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Xuefang Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| |
Collapse
|