1
|
Liu Y, Liu X, Chen W, Yu Y, Meng J, Wang J. Novel platform for engineering stable and effective vaccines against botulinum neurotoxins A, B and E. Front Immunol 2024; 15:1469919. [PMID: 39315101 PMCID: PMC11416995 DOI: 10.3389/fimmu.2024.1469919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, is the most toxic protein known, capable of causing severe paralysis and posing a significant bioterrorism threat due to its extreme lethality even in minute quantities. Despite this, there are currently no FDA-approved vaccines for widespread public use. To address this urgent need, we have developed an innovative vaccine platform by fusing the neuronal binding domain of BoNT/E (Hc/E) with core-streptavidin (CS), resulting in a stable CS-Hc/E vaccine. Mice vaccinated with CS-Hc/E exhibited superior antibody titers compared to those receiving Hc/E alone. To develop a trivalent vaccine against BoNT/A, BoNT/B, and BoNT/E- key contributors to the vast majority of human botulism-we conjugated CS-Hc/E with a biotinylated atoxic chimeric protein incorporating neutralizing epitopes from BoNT/A and BoNT/B. This chimeric protein includes the binding domain of BoNT/A, along with the protease-inactive light chain and translocation domains of BoNT/B. The interaction between CS and biotin formed a stable tetrameric antigen, EBA. Vaccination with EBA in mice elicited robust antibody responses and provided complete protection against lethal doses of BoNT/A, BoNT/B, and BoNT/E. Our findings highlight EBA's potential as a stable and effective broad-spectrum vaccine against BoNT. Moreover, our technology offers a versatile platform for developing multivalent, stable vaccines targeting various biological threats by substituting the BoNT domain(s) with neutralizing epitopes from other life-threatening pathogens, thereby enhancing public health preparedness and biodefense strategies.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaoyu Liu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yunzhou Yu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
- Pharmaceutical College, Henan University, Kaifeng, China
| | - Jianghui Meng
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
2
|
Li Z, Li B, Lu J, Liu X, Tan X, Wang R, Du P, Yu S, Xu Q, Pang X, Yu Y, Yang Z. Biological and Immunological Characterization of a Functional L-HN Derivative of Botulinum Neurotoxin Serotype F. Toxins (Basel) 2023; 15:toxins15030200. [PMID: 36977091 PMCID: PMC10056376 DOI: 10.3390/toxins15030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) can cause nerve paralysis syndrome in mammals and other vertebrates. BoNTs are the most toxic biotoxins known and are classified as Class A biological warfare agents. BoNTs are mainly divided into seven serotypes A-G and new neurotoxins BoNT/H and BoNT/X, which have similar functions. BoNT proteins are 150 kDa polypeptide consisting of two chains and three domains: the light chain (L, catalytic domain, 50 kDa) and the heavy chain (H, 100 kDa), which can be divided into an N-terminal membrane translocation domain (HN, 50 kDa) and a C-terminal receptor binding domain (Hc, 50 kDa). In current study, we explored the immunoprotective efficacy of each functional molecule of BoNT/F and the biological characteristics of the light chain-heavy N-terminal domain (FL-HN). The two structure forms of FL-HN (i.e., FL-HN-SC: single chain FL-HN and FL-HN-DC: di-chain FL-HN) were developed and identified. FL-HN-SC could cleave the vesicle associated membrane protein 2 (VAMP2) substrate protein in vitro as FL-HN-DC or FL. While only FL-HN-DC had neurotoxicity and could enter neuro-2a cells to cleave VAMP2. Our results showed that the FL-HN-SC had a better immune protection effect than the Hc of BoNT/F (FHc), which indicated that L-HN-SC, as an antigen, provided the strongest protective effects against BoNT/F among all the tested functional molecules. Further in-depth research on the different molecular forms of FL-HN suggested that there were some important antibody epitopes at the L-HN junction of BoNT/F. Thus, FL-HN-SC could be used as a subunit vaccine to replace the FHc subunit vaccine and/or toxoid vaccine, and to develop antibody immune molecules targeting L and HN domains rather than the FHc domain. FL-HN-DC could be used as a new functional molecule to evaluate and explore the structure and activity of toxin molecules. Further exploration of the biological activity and molecular mechanism of the functional FL-HN or BoNT/F is warranted.
Collapse
Affiliation(s)
- Zhiying Li
- Beijing Institute of Biotechnology, Beijing 100071, China
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Bolin Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xuyang Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Xiao Tan
- Beijing Institute of Biotechnology, Beijing 100071, China
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaobin Pang
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
- Correspondence: (Y.Y.); (Z.Y.)
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing 100071, China
- Correspondence: (Y.Y.); (Z.Y.)
| |
Collapse
|
3
|
Application of microneedle-based vaccines in biosecurity. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022. [DOI: 10.1016/j.jobb.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Li Z, Lu J, Tan X, Wang R, Xu Q, Yu Y, Yang Z. Functional EL-HN Fragment as a Potent Candidate Vaccine for the Prevention of Botulinum Neurotoxin Serotype E. Toxins (Basel) 2022; 14:toxins14020135. [PMID: 35202162 PMCID: PMC8880310 DOI: 10.3390/toxins14020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine.
Collapse
Affiliation(s)
- Zhen Li
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
| | - Xiao Tan
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| |
Collapse
|
5
|
Brier S, Rasetti-Escargueil C, Wijkhuisen A, Simon S, Marechal M, Lemichez E, Popoff MR. Characterization of a highly neutralizing single monoclonal antibody to botulinum neurotoxin type A. FASEB J 2021; 35:e21540. [PMID: 33817838 DOI: 10.1096/fj.202002492r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/15/2023]
Abstract
Compared to conventional antisera strategies, monoclonal antibodies (mAbs) represent an alternative and safer way to treat botulism, a fatal flaccid paralysis due to botulinum neurotoxins (BoNTs). In addition, mAbs offer the advantage to be produced in a reproducible manner. We previously identified a unique and potent mouse mAb (TA12) targeting BoNT/A1 with high affinity and neutralizing activity. In this study, we characterized the molecular basis of TA12 neutralization by combining Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) with site-directed mutagenesis and functional studies. We found that TA12 recognizes a conformational epitope located at the interface between the HCN and HCC subdomains of the BoNT/A1 receptor-binding domain (HC ). The TA12-binding interface shares common structural features with the ciA-C2 VHH epitope and lies on the face opposite recognized by ciA-C2- and the CR1/CR2-neutralizing mAbs. The single substitution of N1006 was sufficient to affect TA12 binding to HC confirming the position of the epitope. We further uncovered that the TA12 epitope overlaps with the BoNT/A1-binding site for both the neuronal cell surface receptor synaptic vesicle glycoprotein 2 isoform C (SV2C) and the GT1b ganglioside. Hence, TA12 potently blocks the entry of BoNT/A1 into neurons by interfering simultaneously with the binding of SV2C and to a lower extent GT1b. Our study reveals the unique neutralization mechanism of TA12 and emphasizes on the potential of using single mAbs for the treatment of botulism type A.
Collapse
Affiliation(s)
- Sébastien Brier
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR3528, Paris, France
| | | | - Anne Wijkhuisen
- Département Médicaments et Technologies pour la santé, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la santé, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Maud Marechal
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| | - Emmanuel Lemichez
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| |
Collapse
|
6
|
Li Z, Lu JS, Liu S, Wang R, Xu Q, Yu YZ, Yang ZX. Recombinant L-HN Fusion Antigen Derived from the L and HN Domains of Botulinum Neurotoxin B Stimulates a Protective Antibody Response Against Active Neurotoxin. Neurotox Res 2021; 39:1044-1053. [PMID: 33616873 DOI: 10.1007/s12640-021-00337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/04/2023]
Abstract
Botulinum neurotoxin (BoNT) is a neurotoxin produced by Clostridium botulinum in an anaerobic environment. BoNT is the most toxic protein among bacteria, animals, plants, and chemical substances reported to date. BoNTs are 150 kDa proteins composed of three major functional domains: catalytic (L domain, 50 kDa), translocation (HN domain, 50 kDa), and receptor-binding (Hc domain, 50 kDa) domains. Most studies have focused on the use of the Hc domain as an antigen because it is capable of generating robust protective immunity and contains some functional neutralizing epitopes. In the present study, we produced and characterized a recombinant L-HN fusion fragment of the parent BoNT/B (BL-HN) composed of L and HN domains with a deletion in the Hc domain (BHc). When the BL-HN protein was expressed in E. coli, it retained its stable structure and antigenicity. As a vaccine antigen, the recombinant BL-HN protein was found to induce sufficient protection against native BoNT/B in a mouse model. The BL-HN subunit vaccine could also induce a strong humoral immune response and generate sufficient neutralizing antibodies in immunized mice. Therefore, BL-HN may retain the native neurotoxin structure and critical epitopes responsible for inducing serum neutralizing antibodies. Studies of the dose-dependent immunoprotective effects further confirmed that the BL-HN antigen could provide potent protective immunity. This finding suggests that BL-HN can play an important role in immune protection against BoNT/B. Therefore, the BL-HN fusion fragment provides an excellent platform for the design of recombinant botulinum vaccines and neutralizing antibodies.
Collapse
Affiliation(s)
- Zhen Li
- Beijing Institute of Biotechnology, Beijing, 100071, China.,Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jian-Sheng Lu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shan Liu
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Zhi-Xin Yang
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|