1
|
Lapris M, Errico M, Rocchetti G, Gallo A. The Potential of Multi-Screening Methods and Omics Technologies to Detect Both Regulated and Emerging Mycotoxins in Different Matrices. Foods 2024; 13:1746. [PMID: 38890974 PMCID: PMC11171533 DOI: 10.3390/foods13111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Mycotoxins are well-known secondary metabolites produced by several fungi that grow and occur in different crops during both pre-harvest and post-harvest conditions. The contamination and occurrence of mycotoxins currently represent some of the major issues in the entire agri-food system. The quantification of mycotoxins in different feeds and foodstuffs is extremely difficult because of the low concentration ranges; therefore, both sample collection and preparation are essential to providing accurate detection and reliable quantification. Currently, several analytical methods are available for the detection of mycotoxins in both feed and food products, and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) represents the most reliable instrumental approach. In particular, the fast development of high-throughput methods has made it possible to screen and analyze, in the same analytical run and with high accuracy, multiple mycotoxins, such as those regulated, masked, or modified, and emerging ones. Therefore, the aim of this review is to provide an overview of the state of the art of mycotoxins occurrence, health-related concerns, and analyses, discussing the need to perform multi-screening approaches combined with omics technologies to simultaneously analyze several mycotoxins in different feed and food matrices. This approach is expected to provide more comprehensive information about the profile and distribution of emerging mycotoxins, thus enhancing the understanding of their co-occurrence and impact on the entire production chain.
Collapse
Affiliation(s)
| | | | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (M.L.); (M.E.); (A.G.)
| | | |
Collapse
|
2
|
Ashokan M, Rana E, Sneha K, Namith C, Naveen Kumar GS, Azharuddin N, Elango K, Jeyakumar S, Ramesha KP. Metabolomics-a powerful tool in livestock research. Anim Biotechnol 2023; 34:3237-3249. [PMID: 36200897 DOI: 10.1080/10495398.2022.2128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Advancements in the Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) along with recent developments in omics sciences have resulted in a better understanding of molecular mechanisms and pathways associated with the physio-pathological state of the animal. Metabolomics is a post-genomics tool that deals with small molecular metabolites in a given set of time which provides clear information about the status of an organism. Recently many researchers mainly focus their research on metabolomics studies due to its valuable information in the various fields of livestock management and precision dairying. The main aim of the present review is to provide an insight into the current research output from different sources and application of metabolomics in various areas of livestock including nutri-metabolomics, disease diagnosis advancements, reproductive disorders, pharmaco-metabolomics, genomics studies, and dairy production studies. The present review would be helpful in understanding the metabolomics methodologies and use of livestock metabolomics in various areas in a brief way.
Collapse
Affiliation(s)
- M Ashokan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
- Department of Animal Husbandry, Cattle Breeding and Fodder Development, Thiruvarur, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - C Namith
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - G S Naveen Kumar
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - N Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - S Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| |
Collapse
|
3
|
Eichie FO, Taiwo G, Idowu M, Sidney T, Treon E, Ologunagba D, Leal Y, Ogunade IM. Effects of bovine respiratory disease on the plasma metabolome of beef steers during the receiving period. Front Vet Sci 2023; 10:1239651. [PMID: 37601765 PMCID: PMC10436613 DOI: 10.3389/fvets.2023.1239651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The study aimed to investigate the impact of Bovine Respiratory Disease (BRD) on the metabolism of beef steers during a 35-d receiving period using plasma metabolomics. In this study, 77 newly weaned crossbred (Angus × Hereford) beef steers (BW = 206 ± 12 kg and age = 180 ± 17 days) were categorized into two groups: Healthy and Sick groups. The Sick group comprised beef steers diagnosed with BRD at any time during the 35-day period (n = 31), while the Healthy group did not show any signs of BRD (n = 46). Blood samples were collected from the coccygeal vessels on day 35, and plasma samples were subjected to targeted metabolomics analysis using Nuclear Magnetic Resonance spectroscopy. Data and statistical analyses, including biomarker and pathway enrichment analyses, were performed using Metaboanalyst 5.0. Results of the growth performance showed that sick steers had lower (p ≤ 0.05) ADG (1.44 vs. 1.64 kg/d) and higher (p = 0.01) feed:gain ratio (3.57 vs. 3.13) compared to healthy steers. A total of 50 metabolites were quantified. The partial least squares discriminant scores plot showed a slight separation between the two groups of steers, indicating some metabolic differences. Furthermore, the plasma concentrations of four metabolites (sarcosine, methionine, dimethyl sulfone, and L-histidine) were greater (p ≤ 0.05) in healthy steers compared to sick steers. Among these metabolites, sarcosine and methionine qualified as candidate biomarkers associated with BRD infection based on an area under the curve >0.70. Additionally, quantitative enrichment analysis revealed that cysteine and methionine metabolism was enriched in healthy steers compared to sick steers. This suggests that these metabolic pathways may play a role in the response to BRD infection. The findings of this study highlight the altered plasma metabolome in steers with BRD during the receiving period. Understanding these metabolic changes can contribute to the development of effective management strategies and nutritional interventions to mitigate the negative impact of BRD on beef cattle health and immune function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ibukun M. Ogunade
- Division of Animal Science and Nutritional Science, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Shi H, Peng J, Hao J, Wang X, Xu M, Li S. Growth performance, digestibility, and plasma metabolomic profiles of Saanen goats exposed to different doses of aflatoxin B1. J Dairy Sci 2022; 105:9552-9563. [DOI: 10.3168/jds.2022-22129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
|
5
|
Idowu MD, Taiwo G, Pech Cervantes A, Bowdridge S, Ogunade IM. Effects of a multi-component microbial feed additive containing prebiotics and probiotics on health, immune status, metabolism, and performance of newly weaned beef steers during a 35-d receiving period. Transl Anim Sci 2022; 6:txac053. [PMID: 35673543 PMCID: PMC9168071 DOI: 10.1093/tas/txac053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
We examined the effects of dietary supplementation of a multicomponent blend of prebiotics and probiotics on health, immune status, metabolism, and performance of newly weaned beef steers during a 35-d receiving period. Eighty newly weaned crossbred steers (12-hour postweaning; 206 ± 12 kg of body weight [BW]) from a single source were stratified by BW into four pens (20 steers per pen) such that each pen had similar BW at the beginning of the experiment. The pens were randomly assigned to receive a corn silage-based diet with no additive (CON; two pens; n = 40 steers) or a basal diet supplemented with SYNB feed additive at an average of 28 g/steer/d (SYNB; two pens; n = 40 steers). The SYNB additive is a blend of live Saccharomyces cerevisiae and the fermentation products of S. cerevisiae, Enterococcus lactis, Bacillus licheniformis, and Bacillus subtilis and was supplemented for the first 21 d only. Percentage of steers treated for bovine respiratory disease (BRD) was calculated for each dietary treatment. Daily dry matter intake (DMI) and meal events (meal frequency and duration) were measured. Weekly BWs were measured to calculate average daily gain (ADG). Blood samples collected on days 0, 14, 21, 28, and 35 were used for ex-vivo tumor necrosis factor alpha (TNF-α) release assay following lipopolysaccharides (LPS) stimulation, plasma metabolome analysis, and mRNA expression analysis of 84 innate and adaptive immune-related genes. Compared with CON, supplemental SYNB increased (P ≤ 0.05) ADG, DMI, and meal events during the first 7 d. At d 21, there was no treatment effect (P > 0.05) on final BW, DMI, ADG, and meal events; however, beef steers fed supplemental SYNB had greater (P = 0.02) meal duration. Over the entire 35-d receiving period, beef steers fed supplemental SYNB had greater (P = 0.01) ADG and feed efficiency, tended to have greater (P = 0.08) meal duration, and had lower percentage (35 vs. 50%) of animals treated for BRD and lower percentage of sick animals treated for BRD more than once (7.15 vs. 45%). Whole blood expression of pro-inflammatory genes was downregulated while that of anti-inflammatory genes was upregulated in beef steers fed supplemental SYNB. Beef steers fed supplemental SYNB had lower (P = 0.03) plasma concentration of TNF-α after LPS stimulation. Six nutrient metabolic pathways associated with health benefits were enriched (false discovery rate ≤ 0.05) in beef steers fed supplemental SYNB. This study demonstrated that dietary supplementation of SYNB during the first 21 d of arrival reduced BRD morbidity, improved the performance, immune, and metabolic status of beef steers over a 35-d receiving period thereby extending the SYNB effect by a further 14 days post supplementation.
Collapse
Affiliation(s)
- Modoluwamu D Idowu
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Andres Pech Cervantes
- Agricultural Research Station, Fort Valley State University, Fort Valley 31030, GA, USA
| | - Scott Bowdridge
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
6
|
Morris EM, Kitts-Morgan SE, Spangler DM, Ogunade IM, McLeod KR, Harmon DL. Alteration of the Canine Metabolome After a 3-Week Supplementation of Cannabidiol (CBD) Containing Treats: An Exploratory Study of Healthy Animals. Front Vet Sci 2021; 8:685606. [PMID: 34336977 PMCID: PMC8322615 DOI: 10.3389/fvets.2021.685606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the increased interest and widespread use of cannabidiol (CBD) in humans and companion animals, much remains to be learned about its effects on health and physiology. Metabolomics is a useful tool to evaluate changes in the health status of animals and to analyze metabolic alterations caused by diet, disease, or other factors. Thus, the purpose of this investigation was to evaluate the impact of CBD supplementation on the canine plasma metabolome. Sixteen dogs (18.2 ± 3.4 kg BW) were utilized in a completely randomized design with treatments consisting of control and 4.5 mg CBD/kg BW/d. After 21 d of treatment, blood was collected ~2 h after treat consumption. Plasma collected from samples was analyzed using CIL/LC-MS-based untargeted metabolomics to analyze amine/phenol- and carbonyl-containing metabolites. Metabolites that differed - fold change (FC) ≥ 1.2 or ≤ 0.83 and false discovery ratio (FDR) ≤ 0.05 - between the two treatments were identified using a volcano plot. Biomarker analysis based on receiver operating characteristic (ROC) curves was performed to identify biomarker candidates (area under ROC ≥ 0.90) of the effects of CBD supplementation. Volcano plot analysis revealed that 32 amine/phenol-containing metabolites and five carbonyl-containing metabolites were differentially altered (FC ≥ 1.2 or ≤ 0.83, FDR ≤ 0.05) by CBD; these metabolites are involved in the metabolism of amino acids, glucose, vitamins, nucleotides, and hydroxycinnamic acid derivatives. Biomarker analysis identified 24 amine/phenol-containing metabolites and 1 carbonyl-containing metabolite as candidate biomarkers of the effects of CBD (area under ROC ≥ 0.90; P < 0.01). Results of this study indicate that 3 weeks of 4.5 mg CBD/kg BW/d supplementation altered the canine metabolome. Additional work is warranted to investigate the physiological relevance of these changes.
Collapse
Affiliation(s)
- Elizabeth M. Morris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | | | - Dawn M. Spangler
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
8
|
Mote RS, Filipov NM. Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis. Toxins (Basel) 2020; 12:toxins12100633. [PMID: 33019560 PMCID: PMC7600642 DOI: 10.3390/toxins12100633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The ‘omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-‘omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how ‘omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.
Collapse
|
9
|
Inhibition of enteric methanogenesis in dairy cows induces changes in plasma metabolome highlighting metabolic shifts and potential markers of emission. Sci Rep 2020; 10:15591. [PMID: 32973203 PMCID: PMC7515923 DOI: 10.1038/s41598-020-72145-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
There is scarce information on whether inhibition of rumen methanogenesis induces metabolic changes on the host ruminant. Understanding these possible changes is important for the acceptance of methane-reducing practices by producers. In this study we explored the changes in plasma profiles associated with the reduction of methane emissions. Plasma samples were collected from lactating primiparous Holstein cows fed the same diet with (Treated, n = 12) or without (Control, n = 13) an anti-methanogenic feed additive for six weeks. Daily methane emissions (CH4, g/d) were reduced by 23% in the Treated group with no changes in milk production, feed intake, body weight, and biochemical indicators of health status. Plasma metabolome analyses were performed using untargeted [nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC–MS)] and targeted (LC–MS/MS) approaches. We identified 48 discriminant metabolites. Some metabolites mainly of microbial origin such as dimethylsulfone, formic acid and metabolites containing methylated groups like stachydrine, can be related to rumen methanogenesis and can potentially be used as markers. The other discriminant metabolites are produced by the host or have a mixed microbial-host origin. These metabolites, which increased in treated cows, belong to general pathways of amino acids and energy metabolism suggesting a systemic non-negative effect on the animal.
Collapse
|
10
|
Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci Rep 2020; 10:11168. [PMID: 32636484 PMCID: PMC7341856 DOI: 10.1038/s41598-020-68030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of the study was a comparative analysis of the antihemolytic activity against two Staphylococcus aureus strains (8325-4 and NCTC 5655) as well as α-hemolysin and of the membrane modifying action of four hydrolysable tannins with different molecular mass and flexibility: 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (T1), 1,2,3,4,5-penta-O-galloyl-β-d-glucose (T2), 3-O-galloyl-1,2-valoneoyl-β-d-glucose (T3) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T4). We showed that all the compounds studied manifested antihemolytic effects in the range of 5–50 µM concentrations. However, the degree of the reduction of hemolysis by the investigated tannins was not uniform. A valoneoyl group—containing compounds (T3 and T4) were less active. Inhibition of the hemolysis induced by α-hemolysin was also noticed on preincubated with the tannins and subsequently washed erythrocytes. In this case the efficiency again depended on the tannin structure and could be represented by the following order: T1 > T2 > T4 > T3. We also found a relationship between the degree of antihemolytic activity of the tannins studied and their capacity to increase the ordering parameter of the erythrocyte membrane outer layer and to change zeta potential. Overall, our study showed a potential of the T1 and T2 tannins as anti-virulence agents. The results of this study using tannins with different combinations of molecular mass and flexibility shed additional light on the role of tannin structure in activity manifestation.
Collapse
|
11
|
Ogunade I, Jiang Y, Pech Cervantes A. DI/LC-MS/MS-Based Metabolome Analysis of Plasma Reveals the Effects of Sequestering Agents on the Metabolic Status of Dairy Cows Challenged with Aflatoxin B 1. Toxins (Basel) 2019; 11:toxins11120693. [PMID: 31779109 PMCID: PMC6950757 DOI: 10.3390/toxins11120693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022] Open
Abstract
The study applied a targeted metabolomics approach that uses a direct injection and tandem mass spectrometry (DI–MS/MS) coupled with a liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based metabolomics of plasma to evaluate the effects of supplementing clay with or without Saccharomyces cerevisiae fermentation product (SCFP) on the metabolic status of dairy cows challenged with aflatoxin B1. Eight healthy, lactating, multiparous Holstein cows in early lactation (64 ± 11 DIM) were randomly assigned to one of four treatments in a balanced 4 × 4 duplicated Latin square design with four 33 d periods. Treatments were control, toxin (T; 1725 µg aflatoxin B1 (AFB1)/head/day), T with clay (CL; 200 g/head/day), and CL with SCFP (YEA; 35 g of SCFP/head/day). Cows in T, CL, and YEA were dosed with aflatoxin B1 (AFB1) from days 26 to 30. The sequestering agents were top-dressed from day 1 to 33. On day 30 of each period, 15 mL of blood was taken from the coccygeal vessels and plasma samples were obtained from blood by centrifugation and analyzed for metabolites using a kit that combines DI–MS/MS with LC–MS/MS-based metabolomics. The data were analyzed using the GLIMMIX procedure of SAS. The model included the effects of treatment, period, and random effects of cow and square. Significance was declared at p ≤ 0.05. Biomarker profiles for aflatoxin ingestion in dairy cows fed no sequestering agents were determined using receiver–operator characteristic (ROC) curves, as calculated by the ROCCET web server. A total of 127 metabolites such as amino acids, biogenic amines, acylcarnitines, glycerophospholipids, and organic acids were quantified. Compared with the control, T decreased (p < 0.05) plasma concentrations of alanine, leucine, and arginine and tended to decrease that of citrulline. Treatment with CL had no effects on any of the metabolites relative to the control but increased (p ≤ 0.05) concentrations of alanine, leucine, arginine, and that of citrulline (p = 0.07) relative to T. Treatment with YEA resulted in greater (p ≤ 0.05) concentrations of aspartic acid and lysine relative to the control and the highest (p ≤ 0.05) plasma concentrations of alanine, valine, proline, threonine, leucine, isoleucine, glutamic acid, phenylalanine, and arginine compared with other treatments. The results of ROC analysis between C and T groups revealed that the combination of arginine, alanine, methylhistidine, and citrulline had sufficient specificity and sensitivity (area under the curve = 0.986) to be excellent potential biomarkers of aflatoxin ingestion in dairy cows fed no sequestering agents. This study confirmed the protective effects of sequestering agents in dairy cows challenged with aflatoxin B1.
Collapse
Affiliation(s)
- Ibukun Ogunade
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601, USA
- Correspondence:
| | - Yun Jiang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Andres Pech Cervantes
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA;
| |
Collapse
|
12
|
Adeyemi JA, Harmon DL, Compart DMP, Ogunade IM. Effects of a blend of Saccharomyces cerevisiae-based direct-fed microbial and fermentation products in the diet of newly weaned beef steers: growth performance, whole-blood immune gene expression, serum biochemistry, and plasma metabolome1. J Anim Sci 2019; 97:4657-4667. [PMID: 31563947 PMCID: PMC6827398 DOI: 10.1093/jas/skz308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of dietary supplementation of a Saccharomyces cerevisiae-based direct-fed microbial (DFM) on the growth performance, whole-blood immune gene expression, serum biochemistry, and plasma metabolome of newly weaned beef steers during a 42 d receiving period. Forty newly weaned Angus crossbred steers (7 d post-weaning; 210 ± 12 kg of BW; 180 ± 17 d of age) from a single source were stratified by BW and randomly assigned to 1 of 2 treatments: basal diet with no additive (CON; n = 20) or a basal diet top-dressed with 19 g of the DFM (PROB; n = 20). Daily DMI and weekly body weights were measured to calculate average daily gain (ADG) and feed efficiency (FE). Expression of 84 immune-related genes was analyzed on blood samples collected on days 21 and 42. Serum biochemical parameters and plasma metabolome were analyzed on days 0, 21, and 42. On day 40, fecal grab samples were collected for pH measurement. Compared with CON, dietary supplementation of PROB increased final body weight (P = 0.01) and ADG (1.42 vs. 1.23 kg; P = 0.04) over the 42 d feeding trial. There was a tendency for improved FE with PROB supplementation (P = 0.10). No treatment effect (P = 0.24) on DMI was observed. Supplementation with PROB increased (P ≤ 0.05) the concentrations of serum calcium, total protein, and albumin. Compared with CON, dietary supplementation with PROB increased (P ≤ 0.05) the expression of some immune-related genes involved in detecting pathogen-associated molecular patterns (such as TLR1, TLR2, and TLR6), T-cell differentiation (such as STAT6, ICAM1, RORC, TBX21, and CXCR3) and others such as TNF and CASP1, on day 21 and/or day 42. Conversely, IL-8 was upregulated (P = 0.01) in beef steers fed CON diet on day 21. Plasma untargeted plasma metabolome analysis revealed an increase (P ≤ 0.05) in the concentration of metabolites, 5-methylcytosine and indoleacrylic acid involved in protecting the animals against inflammation in steers fed PROB diet. There was a tendency for lower fecal pH in steers fed PROB diet (P = 0.08), a possible indication of increased hindgut fermentation. This study demonstrated that supplementation of PROB diet improved the performance, nutritional status, and health of newly weaned beef steers during a 42 d receiving period.
Collapse
Affiliation(s)
- James A Adeyemi
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | | | - Ibukun M Ogunade
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY
| |
Collapse
|
13
|
NMR-Based Metabolic Profiles of Intact Zebrafish Embryos Exposed to Aflatoxin B1 Recapitulates Hepatotoxicity and Supports Possible Neurotoxicity. Toxins (Basel) 2019; 11:toxins11050258. [PMID: 31071948 PMCID: PMC6563017 DOI: 10.3390/toxins11050258] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a widespread contaminant of grains and other agricultural crops and is globally associated with both acute toxicity and carcinogenicity. In the present study, we utilized nuclear magnetic resonance (NMR), and specifically high-resolution magic angle spin (HRMAS) NMR, coupled to the zebrafish (Danio rerio) embryo toxicological model, to characterize metabolic profiles associated with exposure to AFB1. Exposure to AFB1 was associated with dose-dependent acute toxicity (i.e., lethality) and developmental deformities at micromolar (≤ 2 µM) concentrations. Toxicity of AFB1 was stage-dependent and specifically consistent, in this regard, with a role of the liver and phase I enzyme (i.e., cytochrome P450) bioactivation. Metabolic profiles of intact zebrafish embryos exposed to AFB1 were, furthermore, largely consistent with hepatotoxicity previously reported in mammalian systems including metabolites associated with cytotoxicity (i.e., loss of cellular membrane integrity), glutathione-based detoxification, and multiple pathways associated with the liver including amino acid, lipid, and carbohydrate (i.e., energy) metabolism. Taken together, these metabolic alterations enabled the proposal of an integrated model of the hepatotoxicity of AFB1 in the zebrafish embryo system. Interestingly, changes in amino acid neurotransmitters (i.e., Gly, Glu, and GABA), as a key modulator of neural development, supports a role in recently-reported neurobehavioral and neurodevelopmental effects of AFB1 in the zebrafish embryo model. The present study reinforces not only toxicological pathways of AFB1 (i.e., hepatotoxicity, neurotoxicity), but also multiple metabolites as potential biomarkers of exposure and toxicity. More generally, this underscores the capacity of NMR-based approaches, when coupled to animal models, as a powerful toxicometabolomics tool.
Collapse
|