1
|
Debnath U, Verma S, Patra J, Mandal SK. A review on recent synthetic routes and computational approaches for antibody drug conjugation developments used in anti-cancer therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, Abdollahpour-Alitappeh M. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol 2019; 235:31-64. [PMID: 31215038 DOI: 10.1002/jcp.28967] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023]
Abstract
Cytotoxic small-molecule drugs have a major influence on the fate of antibody-drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Motahare Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmaeil Kavi
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Fahimeh Hosseini
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
3
|
Boyle KE, Boger DL, Wroe A, Vazquez M. Duocarmycin SA, a potent antitumor antibiotic, sensitizes glioblastoma cells to proton radiation. Bioorg Med Chem Lett 2018; 28:2688-2692. [PMID: 29650288 DOI: 10.1016/j.bmcl.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
New treatment modalities for glioblastoma multiforme (GBM) are urgently needed. Proton therapy is considered one of the most effective forms of radiation therapy for GBM. DNA alkylating agents such as temozolomide (TMZ) are known to increase the radiosensitivity of GBM to photon radiation. TMZ is a fairly impotent agent, while duocarmycin SA (DSA) is an extremely potent cytotoxic agent capable of inducing a sequence-selective alkylation of duplex DNA. Here, the effects of sub-nM concentrations of DSA on the radiosensitivity of a human GBM cell line (U-138) to proton irradiation were examined. Radiation sensitivity was determined by viability, apoptosis, necrosis and clonogenic assays. DSA concentrations as low as 0.001 nM significantly sensitized U-138 cells to proton irradiation. DSA demonstrates synergistic cytotoxicity against GBM cells treated with proton radiation in vitro, which may represent a novel therapeutic alternative for the treatment of GBM.
Collapse
Affiliation(s)
- Kristopher E Boyle
- School of Pharmacy, Loma Linda University, 24745 Anderson St., Loma Linda, CA 92354, United States
| | - Dale L Boger
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Andrew Wroe
- Loma Linda University Medical Center, Radiation Medicine Dept., 11234 Anderson St., Loma Linda, CA 92354, United States
| | - Marcelo Vazquez
- Loma Linda University Medical Center, Radiation Medicine Dept., 11234 Anderson St., Loma Linda, CA 92354, United States.
| |
Collapse
|
4
|
F. Tietze L, Gandamala R, Hoekman S, Kangani M, E. Nidhiry J, Penchalaiah K, Singh Raghuvanshi D. Synthesis and Biology of Dimeric, Trimeric and Tetrameric Analogues of Duocarmycin SA. HETEROCYCLES 2018. [DOI: 10.3987/com-17-s(t)16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Nani R, Gorka AP, Nagaya T, Yamamoto T, Ivanic J, Kobayashi H, Schnermann MJ. In Vivo Activation of Duocarmycin-Antibody Conjugates by Near-Infrared Light. ACS CENTRAL SCIENCE 2017; 3:329-337. [PMID: 28470051 PMCID: PMC5408340 DOI: 10.1021/acscentsci.7b00026] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 05/03/2023]
Abstract
Near-IR photocaging groups based on the heptamethine cyanine scaffold present the opportunity to visualize and then treat diseased tissue with potent bioactive molecules. Here we describe fundamental chemical studies that enable biological validation of this approach. Guided by rational design, including computational analysis, we characterize the impact of structural alterations on the cyanine uncaging reaction. A modest change to the ethylenediamine linker (N,N'-dimethyl to N,N'-diethyl) leads to a bathochromic shift in the absorbance maxima, while decreasing background hydrolysis. Building on these structure-function relationship studies, we prepare antibody conjugates that uncage a derivative of duocarmycin, a potent cytotoxic natural product. The optimal conjugate, CyEt-Pan-Duo, undergoes small molecule release with 780 nm light, exhibits activity in the picomolar range, and demonstrates excellent light-to-dark selectivity. Mouse xenograft studies illustrate that the construct can be imaged in vivo prior to uncaging with an external laser source. Significant reduction in tumor burden is observed following a single dose of conjugate and near-IR light. These studies define key chemical principles that enable the identification of cyanine-based photocages with enhanced properties for in vivo drug delivery.
Collapse
Affiliation(s)
- Roger
R. Nani
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Alexander P. Gorka
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Tadanobu Nagaya
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20850, United States
| | - Tsuyoshi Yamamoto
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph Ivanic
- Advanced
Biomedical Computing Center, DSITP, Frederick National Laboratory
for Cancer Research, Leidos Biomedical Research,
Inc., Frederick, Maryland 21702, United
States
| | - Hisataka Kobayashi
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20850, United States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Koch MF, Harteis S, Blank ID, Pestel G, Tietze LF, Ochsenfeld C, Schneider S, Sieber SA. Structural, Biochemical, and Computational Studies Reveal the Mechanism of Selective Aldehyde Dehydrogenase 1A1 Inhibition by Cytotoxic Duocarmycin Analogues. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Koch MF, Harteis S, Blank ID, Pestel G, Tietze LF, Ochsenfeld C, Schneider S, Sieber SA. Structural, Biochemical, and Computational Studies Reveal the Mechanism of Selective Aldehyde Dehydrogenase 1A1 Inhibition by Cytotoxic Duocarmycin Analogues. Angew Chem Int Ed Engl 2015; 54:13550-4. [DOI: 10.1002/anie.201505749] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Indexed: 02/02/2023]
|
8
|
Shawakfeh KQ, Ishtaiwi ZN, Al-Said NH. Facile access to a benzoazepinoquinazolinone via a free radical cyclization. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Neo AG, López C, López A, Castedo L, Tojo G. Studies on the synthesis of a hindered analogue of the antitumour agent CC-1065. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Gerber HP, Koehn FE, Abraham RT. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep 2013; 30:625-39. [PMID: 23525375 DOI: 10.1039/c3np20113a] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Antibody Drug Conjugate (ADC) is a therapeutic modality consisting of a monoclonal antibody attached to a cytotoxic, small-molecule payload. The antibody portion of the ADC serves as a transport vehicle that recognizes and binds to a protein antigen expressed in tumor tissues. The localized delivery and release of the payload within or near malignant cells allows for targeted delivery of a potent cytotoxic agent to diseased tissue, while reducing damage to antigen-negative, normal tissues. Recent years have witnessed an explosive increase in ADC-based therapies, due mainly to clinical reports of activity in both hematologic and epithelial cancers. Accompanying this upsurge in ADC development is a renewed interest in natural product cytotoxins, which are typically highly potent cell-killing agents, but suffer from poor drug-like properties and narrow safety margins when systemically administered as conventional chemotherapeutics. In this review, we discuss recent advances related to the construction of ADCs, the optimization of ADC safety and efficacy, and the increasingly pivotal roles of natural product payloads in the current and future landscape of ADC therapy.
Collapse
Affiliation(s)
- Hans-Peter Gerber
- Pfizer Worldwide Research and Development, Oncology Research Unit, 401 Middletown Road, Pearl River, NY, USA.
| | | | | |
Collapse
|
11
|
Tietze LF, Müller M, Duefert SC, Schmuck K, Schuberth I. Photoactivatable Prodrugs of Highly Potent Duocarmycin Analogues for a Selective Cancer Therapy. Chemistry 2012; 19:1726-31. [DOI: 10.1002/chem.201202773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/24/2012] [Indexed: 12/11/2022]
|
12
|
Tietze LF, Behrendt F, Pestel GF, Schuberth I, Mitkovski M. Synthesis, biological evaluation, and live cell imaging of novel fluorescent duocarmycin analogs. Chem Biodivers 2012; 9:2559-70. [PMID: 23161634 DOI: 10.1002/cbdv.201200289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/07/2022]
Abstract
For a better understanding of the mode of action of duocarmycin and its analogs, the novel fluorescent duocarmycin derivatives 13-15 and 17b-19b were synthesized, and their bioactivity as well as their cellular uptake investigated using confocal laser scanning microscopy (CLSM) in live-cell imaging experiments.
Collapse
Affiliation(s)
- Lutz F Tietze
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, D-37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
13
|
F. Tietze L, Heins A, R. Reiner J, Schuberth I, Duefert SC. SYNTHESIS AND BIOLOGICAL EVALUATION OF A NOVEL ACRONYCINE/DUOCARMYCIN HYBRID NATURAL PRODUCT. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Tietze LF, von Hof JM, Müller M, Krewer B, Schuberth I. Glycosidic prodrugs of highly potent bifunctional duocarmycin derivatives for selective treatment of cancer. Angew Chem Int Ed Engl 2011; 49:7336-9. [PMID: 20799305 DOI: 10.1002/anie.201002502] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lutz F Tietze
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Tietze LF, Schmuck K, Schuster HJ, Müller M, Schuberth I. Synthesis and biological evaluation of prodrugs based on the natural antibiotic duocarmycin for use in ADEPT and PMT. Chemistry 2011; 17:1922-9. [PMID: 21274943 DOI: 10.1002/chem.201002798] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Indexed: 11/08/2022]
Abstract
Chemotherapy of malign tumors is usually associated with serious side effects as common anticancer drugs lack selectivity. An approach to deal with this problem is the antibody-directed enzyme prodrug therapy (ADEPT) and the prodrug monotherapy (PMT). Herein, the synthesis and biological evaluation of new glycosidic prodrugs suitable for both concepts are described. All prodrugs but one are stable in human serum and show QIC(50) values (IC(50) of prodrug/IC(50) of prodrug in the presence of the appropriate glycohydrolase) of up to 6500. This is the best value found so far for compounds interacting with DNA.
Collapse
Affiliation(s)
- Lutz F Tietze
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Tietze LF, Behrendt F, Major F, Krewer B, von Hof JM. Synthesis of Fluorescence-Labelled Glycosidic Prodrugs Based on the Cytotoxic Antibiotic Duocarmycin. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Tietze LF, von Hof JM, Müller M, Krewer B, Schuberth I. Glycosidische Prodrugs hochpotenter difunktioneller Duocarmycin-Derivate für eine selektive Tumortherapie. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|