1
|
Hiremath K, Dodakallanavar J, Sampat GH, Patil VS, Harish DR, Chavan R, Hegde HV, Roy S. Three finger toxins of elapids: structure, function, clinical applications and its inhibitors. Mol Divers 2024; 28:3409-3426. [PMID: 37749455 DOI: 10.1007/s11030-023-10734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The WHO lists snakebite as a "neglected tropical disease". In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids' Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel β-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.
Collapse
Affiliation(s)
- Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Rajashekar Chavan
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
2
|
Samianifard M, Tahoori F, Emami T, Zare Mirakabadi A, Nazari A. Proteomic Analysis and Immunoprofiling of Persian Horned Viper Venom, Pseudocerastes Persicus, from Central Part of Iran. ARCHIVES OF RAZI INSTITUTE 2024; 79:154-167. [PMID: 39192954 PMCID: PMC11345479 DOI: 10.32592/ari.2024.79.1.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2024]
Abstract
Numerous species of venomous snakes of medical importance exist in Iran. Pseudocerastes persicus (P. persicus), one of the medically important snakes, also called the Persian horned viper, has a geographical spread that extends to the east, southwest, and central areas of Iran and is endemic across the wider region. As a result, this species is responsible for many snakebite occurrences. Venom from P. persicus found in the central province of Semnan contains phospholipase A2 and L-amino acid oxidase activities, and high toxic potency. The venom was fractionated by reverse-phase high-performance liquid chromatography (HPLC) and analyzed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and two-dimensional electrophoresis. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), a range of components were identified, consistent with the biochemical and toxicological properties of the venom. Proteins identified from 2D electrophoresis and shotgun methods included metallo- and serine proteases, phospholipases, oxidases, and Kunitz trypsin inhibitors, along with many other components at lower qualitative abundance. This study provides a more detailed understanding of the protein profile of Iranian P. persicus venom, which can be effective in the production of an effective antidote against it. The analysis of the resulting data shows that there is a wide range of proteins in the venom of the Persian horned viper. This information can provide a better understanding of how venom is neutralized by polyclonal antivenom. Considering the wide presence of this snake and its related species in Iran and surrounding countries, knowing the venom protein profile of this family can be of great support to antivenom producers such as Razi Vaccine & Serum Research Institute in the preparation of regional antivenoms.
Collapse
Affiliation(s)
- M Samianifard
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - F Tahoori
- Department of Human Bacterial Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - T Emami
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - A Zare Mirakabadi
- Department of Venomous animal, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - A Nazari
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| |
Collapse
|
3
|
Dehghani R, Monzavi SM, Mehrpour O, Shirazi FM, Hassanian-Moghaddam H, Keyler DE, Wüster W, Westerström A, Warrell DA. Medically important snakes and snakebite envenoming in Iran. Toxicon 2023; 230:107149. [PMID: 37187227 DOI: 10.1016/j.toxicon.2023.107149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Snakebite is a common health condition in Iran with a diverse snake fauna, especially in tropical southern and mountainous western areas of the country with plethora of snake species. The list of medically important snakes, circumstances and effects of their bite, and necessary medical care require critical appraisal and should be updated regularly. This study aims to review and map the distributions of medically important snake species of Iran, re-evaluate their taxonomy, review their venomics, describe the clinical effects of envenoming, and discuss medical management and treatment, including the use of antivenom. Nearly 350 published articles and 26 textbooks with information on venomous and mildly venomous snake species and snakebites of Iran, were reviewed, many in Persian (Farsi) language, making them relatively inaccessible to an international readership. This has resulted in a revised updated list of Iran's medically important snake species, with taxonomic revisions of some, compilation of their morphological features, remapping of their geographical distributions, and description of species-specific clinical effects of envenoming. Moreover, the antivenom manufactured in Iran is discussed, together with treatment protocols that have been developed for the hospital management of envenomed patients.
Collapse
Affiliation(s)
- Ruhollah Dehghani
- Department of Environmental Health, Kashan University of Medical Sciences, Kashan, Iran; Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mostafa Monzavi
- Medical Toxicology Center, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel E Keyler
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor, UK
| | | | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Tan CH, Tan KY, Ng TS, Tan NH, Chong HP. De Novo Venom Gland Transcriptome Assembly and Characterization for Calloselasma rhodostoma (Kuhl, 1824), the Malayan Pit Viper from Malaysia: Unravelling Toxin Gene Diversity in a Medically Important Basal Crotaline. Toxins (Basel) 2023; 15:toxins15050315. [PMID: 37235350 DOI: 10.3390/toxins15050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In Southeast Asia, the Malayan Pit Viper (Calloselasma rhodostoma) is a venomous snake species of medical importance and bioprospecting potential. To unveil the diversity of its toxin genes, this study de novo assembled and analyzed the venom gland transcriptome of C. rhodostoma from Malaysia. The expression of toxin genes dominates the gland transcriptome by 53.78% of total transcript abundance (based on overall FPKM, Fragments Per Kilobase Million), in which 92 non-redundant transcripts belonging to 16 toxin families were identified. Snake venom metalloproteinase (SVMP, PI > PII > PIII) is the most dominant family (37.84% of all toxin FPKM), followed by phospholipase A2 (29.02%), bradykinin/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (16.30%), C-type lectin (CTL, 10.01%), snake venom serine protease (SVSP, 2.81%), L-amino acid oxidase (2.25%), and others (1.78%). The expressions of SVMP, CTL, and SVSP correlate with hemorrhagic, anti-platelet, and coagulopathic effects in envenoming. The SVMP metalloproteinase domains encode hemorrhagins (kistomin and rhodostoxin), while disintegrin (rhodostomin from P-II) acts by inhibiting platelet aggregation. CTL gene homologues uncovered include rhodocytin (platelet aggregators) and rhodocetin (platelet inhibitors), which contribute to thrombocytopenia and platelet dysfunction. The major SVSP is a thrombin-like enzyme (an ancrod homolog) responsible for defibrination in consumptive coagulopathy. The findings provide insight into the venom complexity of C. rhodostoma and the pathophysiology of envenoming.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Tzu Shan Ng
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ho Phin Chong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|
6
|
Chan YW, Tan CH, Heh CH, Tan KY. An immunoinformatic approach to assessing the immunogenic capacity of alpha-neurotoxins in elapid snake venoms. Front Pharmacol 2023; 14:1143437. [PMID: 37153801 PMCID: PMC10155835 DOI: 10.3389/fphar.2023.1143437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: Most elapid snakes produce venoms that contain alpha-neurotoxins (α-NTXs), which are proteins that cause post-synaptic blockade and paralysis in snakebite envenoming. However, existing elapid antivenoms are known for their low potency in neutralizing the neurotoxic activity of α-NTXs, while the immunological basis has not been elucidated. Methods: In this study, a structure-based major histocompatibility complex II (MHCII) epitope predictor of horse (Equus caballus), complemented with DM-editing determinant screening algorithm was adopted to assess the immunogenicity of α-NTXs in the venoms of major Asiatic elapids (Naja kaouthia, Ophiophagus hannah, Laticauda colubrina, Hydrophis schistosus, Hydrophis curtus). Results: The scoring metric M2R, representing the relative immunogenic performance of respective α-NTXs, showed all α-NTXs have an overall low M2R of <0.3, and most of the predicted binders feature non-optimal P1 anchor residues. The M2R scores correlate strongly (R2 = 0.82) with the potency scores (p-score) generated based on the relative abundances of α-NTXs and the neutralization potency of commercial antivenoms. Discussion: The immunoinformatic analysis indicates that the inferior antigenicity of α-NTXs is not only due to their small molecular size but also the subpar immunogenicity affected by their amino acid composition. Structural modification with conjugation and synthetic epitope as immunogen may potentially enhance the immunogenicity for improved antivenom potency against α-NTXs of elapid snakes.
Collapse
Affiliation(s)
- Yi Wei Chan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Kae Yi Tan,
| |
Collapse
|
7
|
Zukifli NA, Ibrahim Z, Othman I, Ismail AK, Chaisakul J, Hodgson WC, Ahmad Rusmili MR. In Vitro neurotoxicity and myotoxicity of Malaysian Naja sumatrana and Naja kaouthia venoms: Neutralization by monovalent and Neuro Polyvalent Antivenoms from Thailand. PLoS One 2022; 17:e0274488. [PMID: 36094937 PMCID: PMC9467353 DOI: 10.1371/journal.pone.0274488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Naja sumatrana and Naja kaouthia are medically important elapids species found in Southeast Asia. Snake bite envenoming caused by these species may lead to morbidity or mortality if not treated with the appropriate antivenom. In this study, the in vitro neurotoxic and myotoxic effects N. sumatrana and N. kaouthia venoms from Malaysian specimens were assessed and compared. In addition, the neutralizing capability of Cobra Antivenom (CAV), King Cobra Antivenom (KCAV) and Neuro Polyvalent Antivenom (NPAV) from Thailand were compared. Both venoms produced concentration-dependent neurotoxic and myotoxic effects in the chick biventer cervicis nerve-muscle preparation. Based on the time to cause 90% inhibition of twitches (i.e. t90) N. kaouthia venom displayed more potent neurotoxic and myotoxic effects than N. sumatrana venom. All three of the antivenoms significantly attenuated venom-induced twitch reduction of indirectly stimulated tissues when added prior to venom. When added after N. sumatrana venom, at the t90 time point, CAV and NPAV partially restored the twitch height but has no significant effect on the reduction in twitch height caused by N. kaouthia venom. The addition of KCAV, at the t90 time point, did not reverse the attenuation of indirectly stimulated twitches caused by either venom. In addition, none of the antivenoms, when added prior to venom, prevented attenuation of directly stimulated twitches. Differences in the capability of antivenoms, especially NPAV and CAV, to reverse neurotoxicity and myotoxicity indicate that there is a need to isolate and characterize neurotoxins and myotoxins from Malaysian N. kaouthia and N. sumatrana venoms to improve neutralization capability of the antivenoms.
Collapse
Affiliation(s)
- Nor Asyikin Zukifli
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| | - Zalikha Ibrahim
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Muhamad Rusdi Ahmad Rusmili
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
- * E-mail:
| |
Collapse
|
8
|
Tan CH, Tan KY, Wong KY, Tan NH, Chong HP. Equatorial Spitting Cobra ( Naja sumatrana) from Malaysia (Negeri Sembilan and Penang), Southern Thailand, and Sumatra: Comparative Venom Proteomics, Immunoreactivity and Cross-Neutralization by Antivenom. Toxins (Basel) 2022; 14:toxins14080522. [PMID: 36006183 PMCID: PMC9414237 DOI: 10.3390/toxins14080522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
The Equatorial Spitting Cobra (Naja sumatrana) is a medically important venomous snake species in Southeast Asia. Its wide geographical distribution implies potential intra-specific venom variation, while there is no species-specific antivenom available to treat its envenoming. Applying a protein-decomplexing proteomic approach, the study showed that three-finger toxins (3FTX), followed by phospholipases A2 (PLA2), were the major proteins well-conserved across N. sumatrana venoms of different locales. Variations were noted in the subtypes and relative abundances of venom proteins. Of note, alpha-neurotoxins (belonging to 3FTX) are the least in the Penang specimen (Ns-PG, 5.41% of total venom proteins), compared with geographical specimens from Negeri Sembilan (Ns-NS, 14.84%), southern Thailand (Ns-TH, 16.05%) and Sumatra (Ns-SU, 10.81%). The alpha-neurotoxin abundance, in general, correlates with the venom’s lethal potency. The Thai Naja kaouthia Monovalent Antivenom (NkMAV) was found to be immunoreactive toward the N. sumatrana venoms and is capable of cross-neutralizing N. sumatrana venom lethality to varying degrees (potency = 0.49–0.92 mg/mL, interpreted as the amount of venom completely neutralized per milliliter of antivenom). The potency was lowest against NS-SU venom, implying variable antigenicity of its lethal alpha-neurotoxins. Together, the findings suggest the para-specific and geographical utility of NkMAV as treatment for N. sumatrana envenoming in Southeast Asia.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
- Correspondence: or
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
| |
Collapse
|
9
|
Ong HL, Tan CH, Lee LP, Khor SM, Tan KY. An immunodetection assay developed using cobra cytotoxin-specific antibodies: Potential diagnostics for cobra envenoming. Toxicon 2022; 216:157-168. [PMID: 35868411 DOI: 10.1016/j.toxicon.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Cobra (Naja spp.) envenoming is a life-threatening medical emergency, and a correct diagnosis is crucial to initiating timely and appropriate antivenom treatment. However, snakebite diagnostics remain unavailable in Southeast Asia. This study, therefore, developed an immunodetection assay with a potential diagnostic application for cobra envenoming. The cytotoxin of Naja kaouthia (Thai Monocled Cobra) (Nk-CTX) was purified from its venom to produce CTX-specific antibodies in rabbits and chickens. A double-antibody sandwich enzyme-linked immunosorbent assay was developed using the purified anti-Nk-CTX antibodies (immunoglobulin G and immunoglobulin Y), and its selectivity, specificity, and sensitivity for the venoms of five major cobra species in Southeast Asia (N. kaouthia, Naja sumatrana, Naja sputatrix, and Naja siamensis, Naja philippinensis) were studied. The results showed the immunoassay discriminates cobra venoms from other species commonly implicated in snakebites in Southeast Asia, i.e., the Malayan Krait, Many-banded Krait, King Cobra, Eastern Russell's Viper, Malayan Pit Viper and White-lipped Pit Viper. The immunoassay has a high sensitivity for the five cobra venoms, with detection limits (LoD) ranging from 0.6 to 2.6 ng/ml. Together, the findings suggest the potential diagnostic application of the cytotoxin immunoassay for cobra envenoming. The immunoassay was found to exhibit high immunoreactivity toward ten Asiatic cobra venoms (absorbance>1.5), in contrast to African cobra venoms with low immunoreactivity (absorbance<0.9). Considering the varying CTX antigenicity between Asiatic and African cobras, the immunoassay for African cobras should utilize antibodies produced specifically from the cytotoxins of African cobra venoms.
Collapse
Affiliation(s)
- Hui Ling Ong
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Louisa Pernee Lee
- Venom Research and Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Abstract
The deleterious consequences of snake envenomation are due to the extreme protein complexity of snake venoms. Therefore, the identification of their components is crucial for understanding the clinical manifestations of envenomation pathophysiology and for the development of effective antivenoms. In addition, snake venoms are considered as libraries of bioactive molecules that can be used to develop innovative drugs. Numerous separation and analytical techniques are combined to study snake venom composition including chromatographic techniques such as size exclusion and RP-HPLC and electrophoretic techniques. Herein, we present in detail these existing techniques and their applications in snake venom research. In the first part, we discuss the different possible technical combinations that could be used to isolate and purify SV proteins using what is known as bioassay-guided fractionation. In the second part, we describe four different proteomic strategies that could be applied for venomics studies to evaluate whole venom composition, including the mostly used technique: RP-HPLC. Eventually, we show that to date, there is no standard technique used for the separation of all snake venoms. Thus, different combinations might be developed, taking into consideration the main objective of the study, the available resources, and the properties of the target molecules to be isolated.
Collapse
|
11
|
On characterizing the Red-headed Krait (Bungarus flaviceps) venom: Decomplexation proteomics, immunoreactivity and toxicity cross-neutralization by hetero-specific antivenoms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101006. [PMID: 35717758 DOI: 10.1016/j.cbd.2022.101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022]
Abstract
The Red-headed Krait (Bungarus flaviceps) is a medically important venomous snake species in Southeast Asia, while there is no specific antivenom available for its envenoming. This study investigated the venom composition through a decomplexation proteomic approach, and examined the immunoreactivity as well as cross-neutralization efficacy of two hetero-specific krait antivenoms, Bungarus candidus Monovalent Antivenom (BcMAV) and Bungarus fasciatus Monovalent Antivenom (BfMAV), against the venom of B. flaviceps from Peninsular Malaysia. A total of 43 non-redundant proteoforms belonging to 10 toxin families were identified in the venom proteome, which is dominated by phospholipases A2 including beta-bungarotoxin lethal subunit (56.20 % of total venom proteins), Kunitz-type serine protease inhibitors (19.40 %), metalloproteinases (12.85 %) and three-finger toxins (7.73 %). The proteome varied in quantitative aspect from the earlier reported Indonesian (Sumatran) sample, suggesting geographical venom variation. BcMAV and BfMAV were immunoreactive toward the B. flaviceps venom, with BcMAV being more efficacious in immunological binding. Both antivenoms cross-neutralized the venom lethality with varying efficacy, where BcMAV was more potent than BfMAV by ~13 times (normalized potency: 38.04 mg/g vs. 2.73 mg/g, defined as the venom amount completely neutralized by one-gram antivenom protein), supporting the potential utility of BcMAV for para-specific neutralization against B. flaviceps venom.
Collapse
|
12
|
Okumu MO, Mbaria JM, Gikunju JK, Mbuthia PG, Madadi VO, Ochola FO, Maloba KN, Nderitu JG. Preclinical efficacy testing of three antivenoms against Naja ashei venom-induced lethality. Toxicon X 2022; 14:100124. [PMID: 35518711 PMCID: PMC9065424 DOI: 10.1016/j.toxcx.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 10/27/2022] Open
Abstract
This study aimed to determine the efficacy of Inoserp, Vins bioproducts, and South African Institute of Medical Research (SAIMR) polyvalent antivenoms in neutralizing Naja ashei venom-induced lethality in mice. The neutralization efficacy of the antivenoms were expressed as effective dose, median effective ratio, potency, normalized potency, volume, and the number of vials of antivenom required to neutralize 100 mg of Naja ashei venom (NAV).
Collapse
Affiliation(s)
- Mitchel Otieno Okumu
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Kenya
| | - James Mucunu Mbaria
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Kenya
| | - Joseph Kangangi Gikunju
- Department of Medical Laboratory Science, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Paul Gichohi Mbuthia
- Department of Veterinary Pathology, Microbiology, and Parasitology, University of Nairobi, Kenya
| | | | | | | | | |
Collapse
|
13
|
Wang B, Liu G, Luo M, Zhang X, Wang Q, Zou S, Zhang F, Jin X, Zhang L. Preparation and Evaluation of a Horse Antiserum against the Venom of Sea Snake Hydrophis curtus from Hainan, China. Toxins (Basel) 2022; 14:toxins14040253. [PMID: 35448862 PMCID: PMC9024827 DOI: 10.3390/toxins14040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Sea snake venom is extremely toxic, and it can induce severe respiratory failure and cause high mortality. The most effective first aid treatment for sea snake bites is to inject antivenom as soon as possible. However, in China, there are only four types of terrestrial snake antivenoms, none of which are effective in the treatment of sea snake bites. In order to develop an antivenom for the dominant species of sea snakes in Chinese seas, Hydrophis curtus venom (HcuV) was chosen as the antigen to immunize horses. From immune plasma, a high-titer Hydrophis curtus antivenom (HcuAV) was prepared. In vitro assessment showed that HcuAV had a cross-neutralizing capacity against HcuV and Hydrophis cyanocinctus venom (HcyV). In vivo assessment indicated that HcuAV injection could significantly improve the survival rates of the HcuV and HcyV envenomated mice (0% to 100% and 87.5%, respectively) when it was injected at a sufficient amount within the shortest possible time. In addition, HcuAV could also effectively alleviate multiple organ injuries caused by HcuV. These results provide experimental support for the future clinical application of HcuAV.
Collapse
Affiliation(s)
- Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai 200433, China; (B.W.); (G.L.); (Q.W.); (S.Z.); (F.Z.)
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai 200433, China; (B.W.); (G.L.); (Q.W.); (S.Z.); (F.Z.)
| | - Min Luo
- Shanghai Serum Bio-Technology Co., Ltd., Shanghai 201707, China; (M.L.); (X.Z.)
| | - Xin Zhang
- Shanghai Serum Bio-Technology Co., Ltd., Shanghai 201707, China; (M.L.); (X.Z.)
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai 200433, China; (B.W.); (G.L.); (Q.W.); (S.Z.); (F.Z.)
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai 200433, China; (B.W.); (G.L.); (Q.W.); (S.Z.); (F.Z.)
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai 200433, China; (B.W.); (G.L.); (Q.W.); (S.Z.); (F.Z.)
| | - Xia Jin
- Shanghai Serum Bio-Technology Co., Ltd., Shanghai 201707, China; (M.L.); (X.Z.)
- Correspondence: (X.J.); (L.Z.)
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai 200433, China; (B.W.); (G.L.); (Q.W.); (S.Z.); (F.Z.)
- Correspondence: (X.J.); (L.Z.)
| |
Collapse
|
14
|
Snake Venomics: Fundamentals, Recent Updates, and a Look to the Next Decade. Toxins (Basel) 2022; 14:toxins14040247. [PMID: 35448856 PMCID: PMC9028316 DOI: 10.3390/toxins14040247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Venomic research, powered by techniques adapted from proteomics, transcriptomics, and genomics, seeks to unravel the diversity and complexity of venom through which knowledge can be applied in the treatment of envenoming, biodiscovery, and conservation. Snake venom proteomics is most extensively studied, but the methods varied widely, creating a massive amount of information which complicates data comparison and interpretation. Advancement in mass spectrometry technology, accompanied by growing databases and sophisticated bioinformatic tools, has overcome earlier limitations of protein identification. The progress, however, remains challenged by limited accessibility to samples, non-standardized quantitative methods, and biased interpretation of -omic data. Next-generation sequencing (NGS) technologies enable high-throughput venom-gland transcriptomics and genomics, complementing venom proteomics by providing deeper insights into the structural diversity, differential expression, regulation and functional interaction of the toxin genes. Venomic tissue sampling is, however, difficult due to strict regulations on wildlife use and transfer of biological materials in some countries. Limited resources for techniques and funding are among other pertinent issues that impede the progress of venomics, particularly in less developed regions and for neglected species. Genuine collaboration between international researchers, due recognition of regional experts by global organizations (e.g., WHO), and improved distribution of research support, should be embraced.
Collapse
|
15
|
Combined proteomic strategies for in-depth venomic analysis of the beaked sea snake (Hydrophis schistosus) from Songkhla Lake, Thailand. J Proteomics 2022; 259:104559. [DOI: 10.1016/j.jprot.2022.104559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
|
16
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
17
|
Palasuberniam P, Chan YW, Tan KY, Tan CH. Snake Venom Proteomics of Samar Cobra (Naja samarensis) from the Southern Philippines: Short Alpha-Neurotoxins as the Dominant Lethal Component Weakly Cross-Neutralized by the Philippine Cobra Antivenom. Front Pharmacol 2022; 12:727756. [PMID: 35002690 PMCID: PMC8740184 DOI: 10.3389/fphar.2021.727756] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The Samar Cobra, Naja samarensis, is endemic to the southern Philippines and is a WHO-listed Category 1 venomous snake species of medical importance. Envenomation caused by N. samarensis results in neurotoxicity, while there is no species-specific antivenom available for its treatment. The composition and neutralization of N. samarensis venom remain largely unknown to date. This study thus aimed to investigate the venom proteome of N. samarensis for a comprehensive profiling of the venom composition, and to examine the immunorecognition as well as neutralization of its toxins by a hetero-specific antivenom. Applying C18 reverse-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (LC-MS/MS), three-finger toxins (3FTx) were shown to dominate the venom proteome by 90.48% of total venom proteins. Other proteins in the venom comprised snake venom metalloproteinases, phospholipases A2, cysteine-rich secretory proteins, venom nerve growth factors, L-amino acid oxidases and vespryn, which were present at much lower abundances. Among all, short-chain alpha-neurotoxins (SαNTX) were the most highly expressed toxin within 3FTx family, constituting 65.87% of the total venom proteins. The SαNTX is the sole neurotoxic component of the venom and has an intravenous median lethal dose (LD50) of 0.18 μg/g in mice. The high abundance and low LD50 support the potent lethal activity of N. samarensis venom. The hetero-specific antivenom, Philippine Cobra Antivenom (PCAV, raised against Naja philippinensis) were immunoreactive toward the venom and its protein fractions, including the principal SαNTX. In efficacy study, PCAV was able to cross-neutralize the lethality of SαNTX albeit the effect was weak with a low potency of 0.20 mg/ml (defined as the amount of toxin completely neutralized per milliliter of the antivenom). With a volume of 5 ml, each vial of PCAV may cross-neutralize approximately 1 mg of the toxin in vivo. The findings support the potential para-specific use of PCAV in treating envenomation caused by N. samarensis while underscoring the need to improve the potency of its neutralization activity, especially against the highly lethal alpha-neurotoxins.
Collapse
Affiliation(s)
- Praneetha Palasuberniam
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yi Wei Chan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Palasuberniam P, Tan KY, Tan CH. De novo venom gland transcriptomics of Calliophis bivirgata flaviceps: uncovering the complexity of toxins from the Malayan blue coral snake. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210024. [PMID: 34616441 PMCID: PMC8476087 DOI: 10.1590/1678-9199-jvatitd-2021-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 03/03/2023] Open
Abstract
Background: The Malayan blue coral snake, Calliophis bivirgata
flaviceps, is a medically important venomous snake in Southeast
Asia. However, the complexity and diversity of its venom genes remain little
explored. Methods: To address this, we applied high-throughput next-generation sequencing to
profile the venom gland cDNA libraries of C. bivirgata
flaviceps. The transcriptome was de novo
assembled, followed by gene annotation, multiple sequence alignment and
analyses of the transcripts. Results: A total of 74 non-redundant toxin-encoding genes from 16 protein families
were identified, with 31 full-length toxin transcripts. Three-finger toxins
(3FTx), primarily delta-neurotoxins and cardiotoxin-like/cytotoxin-like
proteins, were the most diverse and abundantly expressed. The major 3FTx
(Cb_FTX01 and Cb_FTX02) are highly similar to calliotoxin, a
delta-neurotoxin previously reported in the venom of C.
bivirgata. This study also revealed a conserved tyrosine
residue at position 4 of the cardiotoxin-like/cytotoxin-like protein genes
in the species. These variants, proposed as Y-type CTX-like proteins, are
similar to the H-type CTX from cobras. The substitution is conservative
though, preserving a less toxic form of elapid CTX-like protein, as
indicated by the lack of venom cytotoxicity in previous laboratory and
clinical findings. The ecological role of these toxins, however, remains
unclear. The study also uncovered unique transcripts that belong to
phospholipase A2 of Groups IA and IB, and snake venom
metalloproteinases of PIII subclass, which show sequence variations from
those of Asiatic elapids. Conclusion: The venom gland transcriptome of C. bivirgata flaviceps from
Malaysia was de novo assembled and annotated. The diversity
and expression profile of toxin genes provide insights into the biological
and medical importance of the species.
Collapse
Affiliation(s)
- Praneetha Palasuberniam
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya. Kuala Lumpur, Malaysia.,Department of Biomedical Sciences, University Malaysia Sabah, Faculty of Medicine and Health Sciences, Kota Kinabalu, Sabah, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya. Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya. Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Wong KY, Tan KY, Tan NH, Gnanathasan CA, Tan CH. Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra ( Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization. Toxins (Basel) 2021; 13:558. [PMID: 34437429 PMCID: PMC8402536 DOI: 10.3390/toxins13080558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.
Collapse
Affiliation(s)
- Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
20
|
Zhao HY, Sun Y, Du Y, Li JQ, Lv JG, Qu YF, Lin LH, Lin CX, Ji X, Gao JF. Venom of the Annulated Sea Snake Hydrophis cyanocinctus: A Biochemically Simple but Genetically Complex Weapon. Toxins (Basel) 2021; 13:548. [PMID: 34437419 PMCID: PMC8402435 DOI: 10.3390/toxins13080548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Given that the venom system in sea snakes has a role in enhancing their secondary adaption to the marine environment, it follows that elucidating the diversity and function of venom toxins will help to understand the adaptive radiation of sea snakes. We performed proteomic and de novo NGS analyses to explore the diversity of venom toxins in the annulated sea snake (Hydrophis cyanocinctus) and estimated the adaptive molecular evolution of the toxin-coding unigenes and the toxicity of the major components. We found three-finger toxins (3-FTxs), phospholipase A2 (PLA2) and cysteine-rich secretory protein (CRISP) in the venom proteome and 59 toxin-coding unigenes belonging to 24 protein families in the venom-gland transcriptome; 3-FTx and PLA2 were the most abundant families. Nearly half of the toxin-coding unigenes had undergone positive selection. The short- (i.p. 0.09 μg/g) and long-chain neurotoxin (i.p. 0.14 μg/g) presented fairly high toxicity, whereas both basic and acidic PLA2s expressed low toxicity. The toxicity of H. cyanocinctus venom was largely determined by the 3-FTxs. Our data show the venom is used by H. cyanocinctus as a biochemically simple but genetically complex weapon and venom evolution in H. cyanocinctus is presumably driven by natural selection to deal with fast-moving prey and enemies in the marine environment.
Collapse
Affiliation(s)
- Hong-Yan Zhao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| | - Yan Sun
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China; (Y.D.); (J.-G.L.)
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
| | - Jia-Qi Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
| | - Jin-Geng Lv
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China; (Y.D.); (J.-G.L.)
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China; (Y.D.); (J.-G.L.)
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xiang Ji
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.-Q.L.); (Y.-F.Q.)
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.-Y.Z.); (Y.S.); (L.-H.L.)
| |
Collapse
|
21
|
Zhao HY, Wen L, Miao YF, Du Y, Sun Y, Yin Y, Lin CX, Lin LH, Ji X, Gao JF. Venom-gland transcriptomic, venomic, and antivenomic profiles of the spine-bellied sea snake (Hydrophis curtus) from the South China Sea. BMC Genomics 2021; 22:520. [PMID: 34238212 PMCID: PMC8268360 DOI: 10.1186/s12864-021-07824-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background A comprehensive evaluation of the -omic profiles of venom is important for understanding the potential function and evolution of snake venom. Here, we conducted an integrated multi-omics-analysis to unveil the venom-transcriptomic and venomic profiles in a same group of spine-bellied sea snakes (Hydrophis curtus) from the South China Sea, where the snake is a widespread species and might generate regionally-specific venom potentially harmful to human activities. The capacity of two heterologous antivenoms to immunocapture the H. curtus venom was determined for an in-depth evaluation of their rationality in treatment of H. curtus envenomation. In addition, a phylogenetic analysis by maximum likelihood was used to detect the adaptive molecular evolution of full-length toxin-coding unigenes. Results A total of 90,909,384 pairs of clean reads were generated via Illumina sequencing from a pooled cDNA library of six specimens, and yielding 148,121 unigenes through de novo assembly. Sequence similarity searching harvested 63,845 valid annotations, including 63,789 non-toxin-coding and 56 toxin-coding unigenes belonging to 22 protein families. Three protein families, three-finger toxins (3-FTx), phospholipase A2 (PLA2), and cysteine-rich secretory protein, were detected in the venom proteome. 3-FTx (27.15% in the transcriptome/41.94% in the proteome) and PLA2 (59.71%/49.36%) were identified as the most abundant families in the venom-gland transcriptome and venom proteome. In addition, 24 unigenes from 11 protein families were shown to have experienced positive selection in their evolutionary history, whereas four were relatively conserved throughout evolution. Commercial Naja atra antivenom exhibited a stronger capacity than Bungarus multicinctus antivenom to immunocapture H. curtus venom components, especially short neurotoxins, with the capacity of both antivenoms to immunocapture short neurotoxins being weaker than that for PLA2s. Conclusions Our study clarified the venom-gland transcriptomic and venomic profiles along with the within-group divergence of a H. curtus population from the South China Sea. Adaptive evolution of most venom components driven by natural selection appeared to occur rapidly during evolutionary history. Notably, the utility of commercial N. atra and B. multicinctus antivenoms against H. curtus toxins was not comprehensive; thus, the development of species-specific antivenom is urgently needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07824-7.
Collapse
Affiliation(s)
- Hong-Yan Zhao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lin Wen
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yu-Feng Miao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yan Sun
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yin Yin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiang Ji
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, 572022, Hainan, China. .,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China. .,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
22
|
Lee LP, Tan KY, Tan CH. Snake venom proteomics and antivenomics of two Sundaic lance-headed pit vipers: Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100875. [PMID: 34311411 DOI: 10.1016/j.cbd.2021.100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
Envenomation by two medically important Sundaic pit vipers, Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia), causes hemotoxic syndrome with a potentially fatal outcome. Research on the compositions and antigenicity of these pit viper venoms is however lacking, limiting our understanding of the pathophysiology and treatment of envenomation. This study investigated the venom proteomes of both species through a protein decomplexation strategy, applying C18 reverse-phase high-performance liquid chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein identification through nano-electrospray ionization liquid chromatography-tandem mass spectrometry (nano-ESI-LCMS/MS) of trypsin-digested peptides. The venom antigenicity was profiled against the Thai Green Pit Viper Antivenom (GPVAV, a hetero-specific antivenom), using indirect enzyme-linked immunosorbent assay (ELISA). The venom proteomes of T. wiroti and T. puniceus consisted of 10 and 12 toxin families, respectively. The major proteins were of diverse snake venom serine proteases (19-30% of total venom proteins), snake venom metalloproteinases (17-26%), disintegrins (9-16%), phospholipases A2 (8-28%) and C-type lectins (~8%). These were putative snake toxins implicated in hemorrhage and coagulopathy, consistent with clinical hemotoxicity. GPVAV showed strong immunorecognition toward high and medium molecular weight proteins (e.g., SVMP and PLA2) in both venoms, while a lower binding activity was observed toward small proteins such as disintegrins. Conserved antigenicity in the major hemotoxins supported toxicity cross-neutralization by GPVAV and indicated that the immunorecognition of low molecular weight toxins may be optimized for improved binding efficacy. Taken together, the study provides insights into the pathophysiology and antivenom treatment of envenomation caused by T. wiroti and T. puniceus in the region.
Collapse
Affiliation(s)
- Louisa Pernee Lee
- Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Choo Hock Tan
- Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Tan CH, Palasuberniam P, Blanco FB, Tan KY. Immunoreactivity and neutralization capacity of Philippine cobra antivenom against Naja philippinensis and Naja samarensis venoms. Trans R Soc Trop Med Hyg 2021; 115:78-84. [PMID: 32945886 DOI: 10.1093/trstmh/traa087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/25/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Philippine cobra (Naja philippinensis) and Samar cobra (Naja samarensis) are two WHO Category 1 medically important venomous snakes in the Philippines. Philippine cobra antivenom (PCAV) is the only antivenom available in the country, but its neutralization capacity against the venoms of N. philippinensis and hetero-specific N. samarensis has not been reported. This knowledge gap greatly hinders the optimization of antivenom use in the region. METHODS This study examined the immunological binding and neutralization capacity of PCAV against the two cobra venoms using WHO-recommended protocols. RESULTS In mice, both venoms were highly neurotoxic and lethal with a median lethal dose of 0.18 and 0.20 µg/g, respectively. PCAV exhibited strong and comparable immunoreactivity toward the venoms, indicating conserved venom antigenicity between the two allopatric species. In in vivo assay, PCAV was only moderately effective in neutralizing the toxicity of both venoms. Its potency was even lower against the hetero-specific N. samarensis venom by approximately two-fold compared with its potency against N. philippinensis venom. CONCLUSION The results indicated that PCAV could be used to treat N. samarensis envenomation but at a higher dose, which might increase the risk of hypersensitivity and worsen the shortage of antivenom supply in the field. Antivenom manufacturing should be improved by developing a low-dose, high-efficacy product against cobra envenomation.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research & Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Praneetha Palasuberniam
- Venom Research & Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences & Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Francis Bonn Blanco
- Department of Emergency Medicine, Ospital ng Muntinlupa, Manila, The Philippinies.,Department of Emergency Medicine, Eastern Visayas Regional Medical Center, Tacloban, The Philippines
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Tan CH, Tan KY. De Novo Venom-Gland Transcriptomics of Spine-Bellied Sea Snake ( Hydrophis curtus) from Penang, Malaysia-Next-Generation Sequencing, Functional Annotation and Toxinological Correlation. Toxins (Basel) 2021; 13:toxins13020127. [PMID: 33572266 PMCID: PMC7915529 DOI: 10.3390/toxins13020127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/26/2023] Open
Abstract
Envenomation resulted from sea snake bite is a highly lethal health hazard in Southeast Asia. Although commonly caused by sea snakes of Hydrophiinae, each species is evolutionarily distinct and thus, unveiling the toxin gene diversity within individual species is important. Applying next-generation sequencing, this study investigated the venom-gland transcriptome of Hydrophis curtus (spine-bellied sea snake) from Penang, West Malaysia. The transcriptome was de novo assembled, followed by gene annotation and sequence analyses. Transcripts with toxin annotation were only 96 in number but highly expressed, constituting 48.18% of total FPKM in the overall transcriptome. Of the 21 toxin families, three-finger toxins (3FTX) were the most abundantly expressed and functionally diverse, followed by phospholipases A2. Lh_FTX001 (short neurotoxin) and Lh_FTX013 (long neurotoxin) were the most dominant 3FTXs expressed, consistent with the pathophysiology of envenomation. Lh_FTX001 and Lh_FTX013 were variable in amino acid compositions and predicted epitopes, while Lh_FTX001 showed high sequence similarity with the short neurotoxin from Hydrophis schistosus, supporting cross-neutralization effect of Sea Snake Antivenom. Other toxins of low gene expression, for example, snake venom metalloproteinases and L-amino acid oxidases not commonly studied in sea snake venom were also identified, enriching the knowledgebase of sea snake toxins for future study.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicoogy Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
25
|
Kazandjian TD, Petras D, Robinson SD, van Thiel J, Greene HW, Arbuckle K, Barlow A, Carter DA, Wouters RM, Whiteley G, Wagstaff SC, Arias AS, Albulescu LO, Plettenberg Laing A, Hall C, Heap A, Penrhyn-Lowe S, McCabe CV, Ainsworth S, da Silva RR, Dorrestein PC, Richardson MK, Gutiérrez JM, Calvete JJ, Harrison RA, Vetter I, Undheim EAB, Wüster W, Casewell NR. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 2021; 371:386-390. [PMID: 33479150 PMCID: PMC7610493 DOI: 10.1126/science.abb9303] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense.
Collapse
Affiliation(s)
- T D Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - D Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - S D Robinson
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - J van Thiel
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - H W Greene
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - K Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - A Barlow
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - D A Carter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - R M Wouters
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - G Whiteley
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - S C Wagstaff
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Research Computing Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A S Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - L-O Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A Plettenberg Laing
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C Hall
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - A Heap
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - S Penrhyn-Lowe
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C V McCabe
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - S Ainsworth
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - R R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Molecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - P C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M K Richardson
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - J M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - J J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - R A Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - I Vetter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - E A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, 0316 Oslo, Norway
| | - W Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - N R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
26
|
Wong KY, Tan KY, Tan NH, Tan CH. A Neurotoxic Snake Venom without Phospholipase A 2: Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus). Toxins (Basel) 2021; 13:toxins13010060. [PMID: 33466660 PMCID: PMC7828783 DOI: 10.3390/toxins13010060] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
The Senegalese cobra, Naja senegalensis, is a non-spitting cobra species newly erected from the Naja haje complex. Naja senegalensis causes neurotoxic envenomation in Western Africa but its venom properties remain underexplored. Applying a protein decomplexation proteomic approach, this study unveiled the unique complexity of the venom composition. Three-finger toxins constituted the major component, accounting for 75.91% of total venom proteins. Of these, cardiotoxin/cytotoxin (~53%) and alpha-neurotoxins (~23%) predominated in the venom proteome. Phospholipase A2, however, was not present in the venom, suggesting a unique snake venom phenotype found in this species. The venom, despite the absence of PLA2, is highly lethal with an intravenous LD50 of 0.39 µg/g in mice, consistent with the high abundance of alpha-neurotoxins (predominating long neurotoxins) in the venom. The hetero-specific VINS African Polyvalent Antivenom (VAPAV) was immunoreactive to the venom, implying conserved protein antigenicity in the venoms of N. senegalensis and N. haje. Furthermore, VAPAV was able to cross-neutralize the lethal effect of N. senegalensis venom but the potency was limited (0.59 mg venom completely neutralized per mL antivenom, or ~82 LD50 per ml of antivenom). The efficacy of antivenom should be further improved to optimize the treatment of cobra bite envenomation in Africa.
Collapse
Affiliation(s)
- Kin Ying Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: ; Tel.: +60-3-7967-6685
| |
Collapse
|
27
|
Yu C, Yu H, Li P. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy. Int J Biol Macromol 2020; 165:2994-3006. [PMID: 33122066 DOI: 10.1016/j.ijbiomac.2020.10.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
Abstract
Geographical variation of animal venom is common among venomous animals. This kind of intraspecific variation based on geographical location mainly concerned from envenomation cases and brought new problems in animal venom studies, including venom components regulatory mechanisms, differentiation of venom activities, and clinical treatment methods. At present, food is considered as the most related factor influencing venom development. Related research defined the variational venomous animal species by the comparison of venom components and activities in snakes, jellyfish, scorpions, cone snails, ants, parasitoid wasps, spiders and toads. In snake venom studies, researchers found that antivenom effectiveness was variated to different located venom samples. As described in some snake venom research, developing region-specific antivenom is the development trend. The difficulties of developing region-specific antivenom and theoretical solutions have been discussed. This review summarized biological studies of animal venom geographical variation by species, compared venom components and major biological activities of the vary venom from the same species, and listed the basic methods in comparing venom protein compositions and major toxicity differences to provide a comprehensive reference.
Collapse
Affiliation(s)
- Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
28
|
Wang B, Wang Q, Wang C, Wang B, Qiu L, Zou S, Zhang F, Liu G, Zhang L. A comparative analysis of the proteomes and biological activities of the venoms from two sea snakes, Hydrophis curtus and Hydrophis cyanocinctus, from Hainan, China. Toxicon 2020; 187:35-46. [PMID: 32871160 DOI: 10.1016/j.toxicon.2020.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022]
Abstract
We characterized and compared the venom protein profiles of Hydrophis curtus (synonyms: Lapemis hardwickii, Lapemis curtus and Hydrophis hardwickii) and Hydrophis cyanocinctus, the two representatives of medically important venomous sea snakes in Chinese waters using proteomic approaches. A total of 47 and 38 putative toxins were identified in H. curtus venom (HcuV) and H. cyanocinctus venom (HcyV), respectively, and these toxins could be grouped into 15 functional categories, mainly proteinases, phospholipases, three-finger toxins (3FTxs), lectins, protease inhibitors, ion channel inhibitors, cysteine-rich venom proteins (CRVPs) and snake venom metalloproteases (SVMPs). The constituent ratio of each toxin category varied between HcuV and HcyV with 3FTx (54% in HcuV/69% in HcyV) and PLA2 (38% in HcuV/22% in HcyV) unanimously ranked as the top two most abundant families. Both HcuV and HcyV exhibited relatively high lethality (LD50 values in mice of 0.34 μg/g and 0.24 μg/g, respectively), specific PLA2 activity and hemolytic activity. On the basis of several previous reports of HcuV and HcyV collected from other areas, these findings greatly expand our understanding of geographical variation and interspecies diversity of the two sea snake venoms and can provide a scientific basis for the development of specific sea snake antivenom in the future.
Collapse
Affiliation(s)
- Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Chao Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Leilei Qiu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China.
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
29
|
Preparation and detection of sea snake antisera raised in rabbits. Toxicon 2020; 186:168-174. [PMID: 32828954 DOI: 10.1016/j.toxicon.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
Antivenoms are currently the most effective medication used in the treatment of snakebites. However, there were relatively few studies on preparation of antivenoms targeting sea snakes, especially common sea snakes in China. In this study, we sought to prepare and detect mono- and bispecific antisera raised in rabbits against venoms of two sea snakes, Hydrophis cyanocinctus and H. curtus. The results of enzyme-linked immunosorbent assay showed that the rabbit antisera generally showed clearly detectable immunological cross-reactions after the third immunization and indicated that the strength of cross-reactions increased with an increase in the immunizing dose. Proteins within the H. cyanocinctus and H. curtus venoms showed similar profiles and were mainly concentrated in the low-molecular-weight region (8-25 kDa). Western blotting results revealed that the bands of these low-molecular weight proteins were dense and showed strong immunogenicity. Although we detected comparatively few bands of the high-molecular-weight proteins, these also showed strong immunogenicity. Our results indicate that both mono- and bispecific antisera both can neutralize H. cyanocinctus and H. curtus venoms, and in this regard, the monospecific H. curtus and bispecific antiserum were found to be superior to the H. cyanocinctus antiserum. Given the increasing frequency of snakebites worldwide, we believe that the findings of this study will have high practical applicability.
Collapse
|
30
|
Olaoba OT, Karina dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH. Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020; 7:100052. [PMID: 32776002 PMCID: PMC7399193 DOI: 10.1016/j.toxcx.2020.100052] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) represent a diverse group of multi-domain proteins with several biological activities such as the ability to induce hemorrhage, proteolytic degradation of fibrinogen and fibrin, induction of apoptosis and inhibition of platelet aggregation. Due to these activities, SVMPs are responsible for many of the well-known pathological phenotypes in snake envenomations caused particularly by species from the Viperidae family and the Crotalinae subfamily. These proteins have been classified based on their size and domain structure into P–I, P-II and P-III classes. Comparatively, members of the P–I SVMPs possess the simplest structures, formed by the catalytic metalloproteinase domain only; the P-II SVMPs are moderately more complex, having the canonical disintegrin domain in addition to the metalloproteinase domain; members of the P-III class are more structurally varied, comprising the metalloproteinase, disintegrin-like, and cysteine-rich domains. Proteolytic cleavage, repeated domain loss and presence of other ancillary domains are responsible for structural diversities in the P-III class. However, studies continue to unveil the relationship between the structure and function of these proteins. In this review, we recovered evidences from literature on the structural peculiarities and functional classification of Snake Venom Metalloproteinases. In addition, we reflect on diversities that exist among each class while taking into account specific and up-to-date class-based activities.
Collapse
Affiliation(s)
- Olamide Tosin Olaoba
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | - Patty Karina dos Santos
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | | | - Dulce Helena Ferreira de Souza
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
31
|
Ratanabanangkoon K, Tan KY, Pruksaphon K, Klinpayom C, Gutiérrez JM, Quraishi NH, Tan CH. A pan-specific antiserum produced by a novel immunization strategy shows a high spectrum of neutralization against neurotoxic snake venoms. Sci Rep 2020; 10:11261. [PMID: 32647261 PMCID: PMC7347863 DOI: 10.1038/s41598-020-66657-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Snakebite envenomation is a neglected tropical disease of high mortality and morbidity largely due to insufficient supply of effective and affordable antivenoms. Snake antivenoms are mostly effective against the venoms used in their production. It is thus crucial that effective and affordable antivenom(s) with wide para-specificity, capable of neutralizing the venoms of a large number of snakes, be produced. Here we studied the pan-specific antiserum prepared previously by a novel immunization strategy involving the exposure of horses to a ‘diverse toxin repertoire’ consisting of 12 neurotoxic Asian snake toxin fractions/ venoms from six species. This antiserum was previously shown to exhibit wide para-specificity by neutralizing 11 homologous and 16 heterologous venoms from Asia and Africa. We now show that the antiserum can neutralize 9 out of 10 additional neurotoxic venoms. Altogether, 36 snake venoms belonging to 10 genera from 4 continents were neutralized by the antiserum. Toxin profiles previously generated using proteomic techniques of these 36 venoms identified α-neurotoxins, β-neurotoxins, and cytotoxins as predominant toxins presumably neutralized by the antiserum. The bases for the wide para-specificity of the antiserum are discussed. These findings indicate that it is feasible to generate antivenoms of wide para-specificity against elapid neurotoxic venoms from different regions in the world and raises the possibility of a universal neurotoxic antivenom. This should reduce the mortality resulting from neurotoxic snakebite envenomation.
Collapse
Affiliation(s)
- Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand. .,Laboratory of Immunology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiya Klinpayom
- Veterinary Hospital, The Veterinary and Remount Department, The Royal Thai Army, Nakorn Pathom, 73000, Thailand
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Naeem H Quraishi
- Anti Snake Venom/Anti Rabies Serology Laboratory, People's University of Medical and Health Sciences for Women, Nawabshah, Pakistan
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
32
|
Hia YL, Tan KY, Tan CH. Comparative venom proteomics of banded krait (Bungarus fasciatus) from five geographical locales: Correlation of venom lethality, immunoreactivity and antivenom neutralization. Acta Trop 2020; 207:105460. [PMID: 32278639 DOI: 10.1016/j.actatropica.2020.105460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
The banded krait, Bungarus fasciatus is a medically important venomous snake in Asia. The wide distribution of this species in Southeast Asia and southern China indicates potential geographical variation of the venom which may impact the clinical management of snakebite envenomation. This study investigated the intraspecific venom variation of B. fasciatus from five geographical locales through a venom decomplexing proteomic approach, followed by toxinological and immunological studies. The venom proteomes composed of a total of 9 toxin families, comprising 22 to 31 proteoforms at varying abundances. The predominant proteins were phospholipase A2 (including beta-bungarotoxin), Kunitz-type serine protease inhibitor (KSPI) and three-finger toxins (3FTx), which are toxins that cause neurotoxicity and lethality. The venom lethality varied with geographical origins of the snake, with intravenous median lethal doses (LD50) ranging from 0.45-2.55 µg/g in mice. The Thai Bungarus fasciatus monovalent antivenom (BFMAV) demonstrated a dose-dependent increasing immunological binding activity toward all venoms; however, its in vivo neutralization efficacy varied vastly with normalized potency values ranging from 3 to 28 mg/g, presumably due to the compositional differences of dominant proteins in the different venoms. The findings support that antivenom use should be optimized in different geographical areas. The development of a pan-regional antivenom may be a more sustainable solution for the treatment of snakebite envenomation.
Collapse
|
33
|
Tan KY, Ng TS, Bourges A, Ismail AK, Maharani T, Khomvilai S, Sitprija V, Tan NH, Tan CH. Geographical variations in king cobra (Ophiophagus hannah) venom from Thailand, Malaysia, Indonesia and China: On venom lethality, antivenom immunoreactivity and in vivo neutralization. Acta Trop 2020; 203:105311. [PMID: 31862461 DOI: 10.1016/j.actatropica.2019.105311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023]
Abstract
The wide distribution of king cobra (Ophiophagus hannah), a medically important venomous snake in Asia could be associated with geographical variation in the toxicity and antigenicity of the venom. This study investigated the lethality of king cobra venoms (KCV) from four geographical locales (Malaysia, Thailand, Indonesia, China), and the immunological binding as well as in vivo neutralization activities of three antivenom products (Thai Ophiophagus hannah monovalent antivenom, OHMAV; Indonesian Serum Anti Bisa Ular, SABU; Chinese Naja atra monovalent antivenom, NAMAV) toward the venoms. The Indonesian and Chinese KCV were more lethal (median lethal dose, LD50 ~0.5 μg/g) than those from Malaysia and Thailand (LD50 ~1.0 μg/g). The antivenoms, composed of F(ab)'2, were variably immunoreactive toward the KCV from all locales, with OHMAV exhibited the highest immunological binding activity. In mice, OHMAV neutralized the neurotoxic lethality of Thai KCV most effectively (normalized potency = 118 mg venom neutralized per g antivenom) followed by Malaysian, Indonesian and Chinese KCV. In comparison, the hetero-specific SABU was remarkably less potent by at least 6 to10 folds, whereas NAMAV appeared to be non-effective. The finding supports that a specific king cobra antivenom is needed for the effective treatment of king cobra envenomation in each region.
Collapse
Affiliation(s)
- Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tzu Shan Ng
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aymeric Bourges
- Venom Research & Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Tri Maharani
- Department of Emergency, Daha Husada Hospital, Kediri, East Java Province, Indonesia
| | - Sumana Khomvilai
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research & Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Lyons K, Dugon MM, Healy K. Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes. Toxins (Basel) 2020; 12:toxins12020074. [PMID: 31979380 PMCID: PMC7076792 DOI: 10.3390/toxins12020074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Venoms are best known for their ability to incapacitate prey. In predatory groups, venom potency is predicted to reflect ecological and evolutionary drivers relating to diet. While venoms have been found to have preyspecific potencies, the role of diet breadth on venom potencies has yet to be tested at large macroecological scales. Here, using a comparative analysis of 100 snake species, we show that the evolution of prey-specific venom potencies is contingent on the breadth of a species' diet. We find that while snake venom is more potent when tested on species closely related to natural prey items, we only find this prey-specific pattern in species with taxonomically narrow diets. While we find that the taxonomic diversity of a snakes' diet mediates the prey specificity of its venom, the species richness of its diet was not found to affect these prey-specific potency patterns. This indicates that the physiological diversity of a species' diet is an important driver of the evolution of generalist venom potencies. These findings suggest that the venoms of species with taxonomically diverse diets may be better suited to incapacitating novel prey species and hence play an important role for species within changing environments.
Collapse
Affiliation(s)
- Keith Lyons
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| | | | - Kevin Healy
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| |
Collapse
|
35
|
Albulescu LO, Kazandjian T, Slagboom J, Bruyneel B, Ainsworth S, Alsolaiss J, Wagstaff SC, Whiteley G, Harrison RA, Ulens C, Kool J, Casewell NR. A Decoy-Receptor Approach Using Nicotinic Acetylcholine Receptor Mimics Reveals Their Potential as Novel Therapeutics Against Neurotoxic Snakebite. Front Pharmacol 2019; 10:848. [PMID: 31417406 PMCID: PMC6683245 DOI: 10.3389/fphar.2019.00848] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes 138,000 deaths each year. Neurotoxic snake venoms contain small neurotoxins, including three-finger toxins (3FTxs), which can cause rapid paralysis in snakebite victims by blocking postsynaptic transmission via nicotinic acetylcholine receptors (nAChRs). These toxins are typically weakly immunogenic and thus are often not effectively targeted by current polyclonal antivenom therapies. We investigated whether nAChR mimics, also known as acetylcholine binding proteins (AChBPs), could effectively capture 3FTxs and therefore be developed as a novel class of snake-generic therapeutics for combatting neurotoxic envenoming. First, we identified the binding specificities of 3FTx from various medically important elapid snake venoms to nAChR using two recombinant nAChR mimics: the AChBP from Lymnaea stagnalis and a humanized neuronal α7 version (α7-AChBP). We next characterized these AChBP-bound and unbound fractions using SDS-PAGE and mass spectrometry. Interestingly, both mimics effectively captured long-chain 3FTxs from multiple snake species but largely failed to capture the highly related short-chain 3FTxs, suggesting a high level of binding specificity. We next investigated whether nAChR mimics could be used as snakebite therapeutics. We showed that while α7-AChBP alone did not protect against Naja haje (Egyptian cobra) venom lethality in vivo, it significantly prolonged survival times when coadministered with a nonprotective dose of antivenom. Thus, nAChR mimics are capable of neutralizing specific venom toxins and may be useful adjunct therapeutics for improving the safety and affordability of existing snakebite treatments by reducing therapeutic doses. Our findings justify exploring the future development of AChBPs as potential snakebite treatments.
Collapse
Affiliation(s)
- Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Taline Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julien Slagboom
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ben Bruyneel
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gareth Whiteley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
36
|
Tan CH, Wong KY, Chong HP, Tan NH, Tan KY. Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. J Proteomics 2019; 206:103418. [PMID: 31201947 DOI: 10.1016/j.jprot.2019.103418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
Abstract
The Philippine cobra, Naja philippinensis, is a WHO Category 1 venomous snake of medical importance responsible for fatal envenomation in the northern Philippines. To elucidate the venom proteome and pathophysiology of envenomation, N. philippinensis venom proteins were decomplexed with reverse-phase high-performance liquid chromatography, and protein fractions were subsequently digested with trypsin, followed by nano-liquid chromatography-tandem mass spectrometry analysis and data mining. Three-finger toxins (3FTX, 66.64% of total venom proteins) and phospholipases A2 (PLA2, 22.88%) constitute the main bulk of venom proteome. Other proteins are present at low abundances (<4% each); these include metalloproteinase, serine protease, cobra venom factor, cysteine-rich secretory protein, vespryn, phosphodiesterase, 5' nucleotidase and nerve growth factor. In the three-finger toxin family, the alpha-neurotoxins comprise solely short neurotoxins (SNTX, 44.55%), supporting that SNTX is the principal toxin responsible for neuromuscular paralysis and lethality reported in clinical envenomation. Cytotoxins (CTX) are the second most abundant 3FTX proteins in the venom (21.31%). The presence of CTX correlates with the venom cytotoxic effect, which is more prominent in murine cells than in human cells. From the practical standpoint, SNTX-driven neuromuscular paralysis is significant in N. philippinensis envenomation. Antivenom production and treatment should be tailored accordingly to ensure effective neutralization of SNTX. BIOLOGICAL SIGNIFICANCE: The venom proteome of Naja philippinensis, the Philippine cobra, is unravelled for the first time. Approximately half the protein bulk of the venom is made up of short neurotoxins (44.55% of the total venom proteins). As the only alpha-neurotoxins present in the venom, short neurotoxins are the causative toxins of the post-synaptic blockade and fast-onset neuromuscular paralysis in N. philippinensis envenomation. A substantial amount of cytotoxins (21.31%) was also detected in N. philippinensis venom, supporting that the venom can be cytotoxic although the effect is much weaker in human cells compared to murine cells. The finding is consistent with the low incidence of local tissue necrosis in N. philippinensis envenomation, although this does not negate the need for monitoring and care of bite wound in the patients.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kin Ying Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ho Phin Chong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Exploring the Diversity and Novelty of Toxin Genes in Naja sumatrana, the Equatorial Spitting Cobra from Malaysia through De Novo Venom-Gland Transcriptomics. Toxins (Basel) 2019; 11:toxins11020104. [PMID: 30754700 PMCID: PMC6409529 DOI: 10.3390/toxins11020104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
The equatorial spitting cobra, Naja sumatrana, is a distinct species of medically important venomous snakes, listed as WHO Category 1 in Southeast Asia. The diversity of its venom genes has not been comprehensively examined, although a few toxin sequences annotated to Naja sputatrix were reported previously through cloning studies. To investigate this species venom genes’ diversity, de novo venom-gland transcriptomics of N. sumatrana from West Malaysia was conducted using next-generation sequencing technology. Genes encoding toxins represented only 60 of the 55,396 transcripts, but were highly expressed, contributing to 79.22% of total gene expression (by total FPKM) in the venom-glands. The toxin transcripts belong to 21 families, and 29 transcripts were further identified as full-length. Three-finger toxins (3FTx) composed of long, short, and non-conventional groups, constituted the majority of toxin transcripts (91.11% of total toxin FPKM), followed by phospholipase A2 (PLA2, 7.42%)—which are putatively pro-inflammatory and cytotoxic. The remaining transcripts in the 19 families were expressed at extremely low levels. Presumably, these toxins were associated with ancillary functions. Our findings unveil the diverse toxin genes unique to N. sumatrana, and provide insights into the pathophysiology of N. sumatrana envenoming.
Collapse
|