1
|
Lu J, Jiang Y, Guo J, Chen L, Liu F, Li Z, Liu X, Du P, Yu Y, Wang R, Yang Z. A human bispecific antibody neutralizes botulinum neurotoxin serotype A. Sci Rep 2023; 13:20806. [PMID: 38012220 PMCID: PMC10681988 DOI: 10.1038/s41598-023-48008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Botulinum neurotoxin (BoNT) shows high lethality and toxicity, marking it as an important biological threat. The only effective post-exposure therapy is botulinum antitoxin; however, such products have great potential for improvement. To prevent or treat BoNT, monoclonal antibodies (mAbs) are promising agents. Herein, we aimed to construct a bispecific antibody (termed LUZ-A1-A3) based on the anti-BoNT/A human monoclonal antibodies (HMAb) A1 and A3. LUZ-A1-A3 binds to the Hc and L-HN domains of BoNT/A, displaying potent neutralization activity against BoNT/A (124 × higher than that of HMAb A1 or HMAb A3 alone and 15 × higher than that of the A1 + A3 combination). LUZ-A1-A3 provided effective protection against BoNT/A in an in vivo mouse model. Mice were protected from infection with 500 × LD50 of BoNT/A by LUZ-A1-A3 from up to 7 days before intraperitoneal administration of BoNT/A. We also demonstrated the effective therapeutic capacity of LUZ-A1-A3 against BoNT/A in a mouse model. LUZ-A1-A3 (5 μg/mouse) neutralized 20 × LD50 of BoNT/A at 3 h after intraperitoneal BoNT/A administration and complete neutralized 20 × LD50 of BoNT/A at 0.5 h after intraperitoneal BoNT/A administration. Thus, LUZ-A1-A3 is a promising agent for the pre-exposure prophylaxis and post-exposure treatment of BoNT/A.
Collapse
Affiliation(s)
- Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Chen
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fujia Liu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhiying Li
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xuyang Liu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
2
|
Li Z, Lu J, Tan X, Wang R, Xu Q, Yu Y, Yang Z. Functional EL-HN Fragment as a Potent Candidate Vaccine for the Prevention of Botulinum Neurotoxin Serotype E. Toxins (Basel) 2022; 14:toxins14020135. [PMID: 35202162 PMCID: PMC8880310 DOI: 10.3390/toxins14020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine.
Collapse
Affiliation(s)
- Zhen Li
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
| | - Xiao Tan
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| |
Collapse
|
3
|
Zeng L, Guo L, Wang Z, Xu X, Ding H, Song S, Xu L, Kuang H, Xu C. Gold nanoparticle-based immunochromatographic assay for detection Pseudomonas aeruginosa in water and food samples. Food Chem X 2021; 9:100117. [PMID: 33778481 PMCID: PMC7985707 DOI: 10.1016/j.fochx.2021.100117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
An ICA was developed for P. aeruginosa detection. The ICA strip showed a limit of detection of 2.41 × 104 CFU/mL. The ICA could be applied to detect P. aeruginosa in water and food samples.
Pseudomonas aeruginosa (P. aeruginosa) is the common infection-causing bacterial pathogen. Conventional methods for the detection of P. aeruginosa are time-consuming, and therefore, a more rapid analytical method is required. Here, monoclonal antibodies (Mabs) against P. aeruginosa (CICC 10419) were prepared and based on paired Mabs, an immunochromatographic assay (ICA) was developed. The ICA strip showed a limit of detection of 2.41 × 104 CFU/mL and the linear range of detection was 3.13 × 104-1.0 × 106 CFU/mL. No cross-reactivity was observed when other common Gram-negative and Gram-positive bacteria were used. The analytical performance of the ICA strip indicated that the developed ICA had good specificity and stability. Moreover, the feasibility of the ICA strip was verified by detecting P. aeruginosa (CICC 10419) in spiked water and food samples. The ICA strip could detect samples contaminated with a low-level of P. aeruginosa (CICC 10419) after 8 h enrichment.
Collapse
Affiliation(s)
- Lu Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hongliu Ding
- Suzhou Product Quality Supervision Inspection, 1368 Wuzhong Avenue, Suzhou 215104, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|