1
|
Cantrell MS, Soto-Avellaneda A, Wall JD, Ajeti AD, Morrison BE, Warner LR, McDougal OM. Repurposing Drugs to Treat Heart and Brain Illness. Pharmaceuticals (Basel) 2021; 14:ph14060573. [PMID: 34208502 PMCID: PMC8235459 DOI: 10.3390/ph14060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Drug development is a complicated, slow and expensive process with high failure rates. One strategy to mitigate these factors is to recycle existing drugs with viable safety profiles and have gained Food and Drug Administration approval following extensive clinical trials. Cardiovascular and neurodegenerative diseases are difficult to treat, and there exist few effective therapeutics, necessitating the development of new, more efficacious drugs. Recent scientific studies have led to a mechanistic understanding of heart and brain disease progression, which has led researchers to assess myriad drugs for their potential as pharmacological treatments for these ailments. The focus of this review is to survey strategies for the selection of drug repurposing candidates and provide representative case studies where drug repurposing strategies were used to discover therapeutics for cardiovascular and neurodegenerative diseases, with a focus on anti-inflammatory processes where new drug alternatives are needed.
Collapse
Affiliation(s)
- Maranda S. Cantrell
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.D.W.); (A.D.A.)
| | - Alejandro Soto-Avellaneda
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Department of Biology, Boise State University, Boise, ID 83725, USA
| | - Jackson D. Wall
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.D.W.); (A.D.A.)
| | - Aaron D. Ajeti
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.D.W.); (A.D.A.)
| | - Brad E. Morrison
- Department of Biology, Boise State University, Boise, ID 83725, USA
- Correspondence: (B.E.M.); (L.R.W.); (O.M.M.)
| | - Lisa R. Warner
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Correspondence: (B.E.M.); (L.R.W.); (O.M.M.)
| | - Owen M. McDougal
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725, USA; (M.S.C.); (A.S.-A.)
- Correspondence: (B.E.M.); (L.R.W.); (O.M.M.)
| |
Collapse
|
2
|
Bosse GD, Urcino C, Watkins M, Flórez Salcedo P, Kozel S, Chase K, Cabang A, Espino SS, Safavi-Hemami H, Raghuraman S, Olivera BM, Peterson RT, Gajewiak J. Discovery of a Potent Conorfamide from Conus episcopatus Using a Novel Zebrafish Larvae Assay. JOURNAL OF NATURAL PRODUCTS 2021; 84:1232-1243. [PMID: 33764053 DOI: 10.1021/acs.jnatprod.0c01297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products such as conotoxins have tremendous potential as tools for biomedical research and for the treatment of different human diseases. Conotoxins are peptides present in the venoms of predatory cone snails that have a rich diversity of pharmacological functions. One of the major bottlenecks in natural products research is the rapid identification and evaluation of bioactive molecules. To overcome this limitation, we designed a set of light-induced behavioral assays in zebrafish larvae to screen for bioactive conotoxins. We used this screening approach to test several unique conotoxins derived from different cone snail clades and discovered that a conorfamide from Conus episcopatus, CNF-Ep1, had the most dramatic alterations in the locomotor behavior of zebrafish larvae. Interestingly, CNF-Ep1 is also bioactive in several mouse assay systems when tested in vitro and in vivo. Our novel screening platform can thus accelerate the identification of bioactive marine natural products, and the first compound discovered using this assay has intriguing properties that may uncover novel neuronal circuitry.
Collapse
Affiliation(s)
- Gabriel D Bosse
- Department of Pharmacology and Toxicology, University of Utah, 201 Skaggs Hall 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Cristoval Urcino
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Maren Watkins
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Paula Flórez Salcedo
- Department of Neurobiology and Anatomy, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, Utah 84112, United States
| | - Sabrina Kozel
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - April Cabang
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Samuel S Espino
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Helena Safavi-Hemami
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, Utah 84112, United States
- Department of Biomedical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Shrinivasan Raghuraman
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, 201 Skaggs Hall 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Marquart LA, Turner MW, Warner LR, King MD, Groome JR, McDougal OM. Ribbon α-Conotoxin KTM Exhibits Potent Inhibition of Nicotinic Acetylcholine Receptors. Mar Drugs 2019; 17:E669. [PMID: 31795126 PMCID: PMC6950571 DOI: 10.3390/md17120669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
KTM is a 16 amino acid peptide with the sequence WCCSYPGCYWSSSKWC. Here, we present the nuclear magnetic resonance (NMR) structure and bioactivity of this rationally designed α-conotoxin (α-CTx) that demonstrates potent inhibition of rat α3β2-nicotinic acetylcholine receptors (rα3β2-nAChRs). Two bioassays were used to test the efficacy of KTM. First, a qualitative PC12 cell-based assay confirmed that KTM acts as a nAChR antagonist. Second, bioactivity evaluation by two-electrode voltage clamp electrophysiology was used to measure the inhibition of rα3β2-nAChRs by KTM (IC50 = 0.19 ± 0.02 nM), and inhibition of the same nAChR isoform by α-CTx MII (IC50 = 0.35 ± 0.8 nM). The three-dimensional structure of KTM was determined by NMR spectroscopy, and the final set of 20 structures derived from 32 distance restraints, four dihedral angle constraints, and two disulfide bond constraints overlapped with a mean global backbone root-mean-square deviation (RMSD) of 1.7 ± 0.5 Å. The structure of KTM did not adopt the disulfide fold of α-CTx MII for which it was designed, but instead adopted a flexible ribbon backbone and disulfide connectivity of C2-C16 and C3-C8 with an estimated 12.5% α-helical content. In contrast, α-CTx MII, which has a native fold of C2-C8 and C3-C16, has an estimated 38.1% α-helical secondary structure. KTM is the first reported instance of a Framework I (CC-C-C) α-CTx with ribbon connectivity to display sub-nanomolar inhibitory potency of rα3β2-nAChR subtypes.
Collapse
Affiliation(s)
- Leanna A. Marquart
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
| | - Lisa R. Warner
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew D. King
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA;
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| |
Collapse
|