1
|
Song Z, Zhang T, Liang Y, Mcminn A, Wang M, Jiao N, Luo T. Seasonal Variations of Community Structure and Functional Genes of Synechococcus in the Subtropical Coastal Waters: Insights from FACS and High-Throughput Sequencing. Microorganisms 2025; 13:764. [PMID: 40284601 PMCID: PMC12029665 DOI: 10.3390/microorganisms13040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Synechococcus plays a pivotal role in the marine biogeochemical cycle. Advances in isolation techniques and high-throughput sequencing have expanded our understanding of the diversity of the Synechococcus community. However, their genomic diversity, functional dynamics and seasonal variations in the coastal waters are still not well known. Here, seawater samples were collected seasonally (March, June, August, December) from three stations in the coastal waters of Xiamen. Using fluorescence-activated cell sorting (FACS), we isolated 1000 Synechococcus cells per sample and performed ITS amplicon sequencing and metagenomic sequencing to analyze the seasonal variations in community structure and functional genes of Synechococcus. Firstly, we conducted a comparative analysis of in situ data and FACS data from three sampling sites in August. FACS samples revealed low-abundance Synechococcus strains underdetected by in situ samples. In addition, 24 clades representing Synechococcus subclusters S5.1, S5.2, and S5.3 were detected from three in situ samples and twelve FACS samples, suggesting the high diversity of Synechococcus in the coastal waters of Xiamen. Furthermore, the Synechococcus community displayed pronounced seasonal variations, and temperature significantly influenced the variations in Synechococcus community composition. Additionally, Synechococcus populations exhibit seasonal functional dynamics, with enhanced metabolic activity in summer characterized by higher numbers of functional genes associated with metabolic pathways compared to winter samples. Altogether, this study underscored the significance of FACS and high-throughput sequencing to reveal the diversity and functional dynamics of Synechococcus.
Collapse
Affiliation(s)
- Zhenzhen Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| | - Ting Zhang
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Institute of Evolution and Marine Biodiversity, MoE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew Mcminn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Institute of Evolution and Marine Biodiversity, MoE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Institute of Evolution and Marine Biodiversity, MoE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Nianzhi Jiao
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| | - Tingwei Luo
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| |
Collapse
|
2
|
Brito-Bello AA, Lopez-Arredondo D. Bioactive Compounds with Pesticide Activities Derived from Aged Cultures of Green Microalgae. BIOLOGY 2023; 12:1149. [PMID: 37627033 PMCID: PMC10452921 DOI: 10.3390/biology12081149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
The excessive use of synthetic pesticides has caused environmental problems and human health risks and increased the development of resistance in several organisms. Allelochemicals, secondary metabolites produced as part of the defense mechanisms in plants and microorganisms, are an attractive alternative to replace synthetic pesticides to remediate these problems. Microalgae are natural producers of a wide range of allelochemicals. Thus, they provide new opportunities to identify secondary metabolites with pesticide activities and an alternative approach to discover new modes of action and circumvent resistance. We screened 10 green microalgae strains belonging to the Chlorophyta phylum for their potential to inhibit the growth of photosynthetic and nonphotosynthetic organisms. Bioassays were established to assess microalgae extracts' effectiveness in controlling the growth of Chlorella sorokiniana, Arabidopsis thaliana, Amaranthus palmeri, and the model nematode Caenorhabditis elegans. All tested strains exhibited herbicidal, nematocidal, or algicidal activities. Importantly, methanol extracts of a Chlamydomonas strain effectively controlled the germination and growth of a glyphosate-resistant A. palmeri biotype. Likewise, some microalgae extracts effectively killed C. elegans L1 larvae. Comprehensive metabolic profiling using LC-MS of extracts with pesticide activities showed that the metabolite composition of Chlamydomonas, Chlorella, and Chloroidium extracts is diverse. Molecules such as fatty acids, isoquinoline alkaloids, aldehydes, and cinnamic acids were more abundant, suggesting their participation in the pesticide activities.
Collapse
Affiliation(s)
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Sildever S, Nishi N, Inaba N, Asakura T, Kikuchi J, Asano Y, Kobayashi T, Gojobori T, Nagai S. Monitoring harmful microalgal species and their appearance in Tokyo Bay, Japan, using metabarcoding. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.79471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the recent decade, high-throughput sequencing (HTS) techniques, in particular, DNA metabarcoding, have facilitated increased detection of biodiversity, including harmful algal bloom (HAB) species. In this study, the presence of HAB species and their appearance patterns were investigated by employing molecular and light microscopy-based monitoring in Tokyo Bay, Japan. The potential co-appearance patterns between the HAB species, as well as with other eukaryotes and prokaryotes were investigated using correlation and association rule-based time-series analysis. In total, 40 unique HAB species were detected, including 12 toxin-producing HAB species previously not reported from the area. More than half of the HAB species were present throughout the sampling season (summer to autumn) and no structuring or succession patterns associated with the environmental conditions could be detected. Statistically significant (p < 0.05, rS ranging from −0.88 to 0.90) associations were found amongst the HAB species and other eukaryotic and prokaryotic species, including genera containing growth-limiting bacteria. However, significant correlations between species differed amongst the years, indicating that variability in environmental conditions between the years may have a stronger influence on the microalgal community structure and interspecies interactions than the variability during the sampling season. The association rule-based time-series analysis allowed the detection of a previously reported negative relationship between Synechococcus sp. and Skeletonema sp. in nature. Overall, the results support the applicability of metabarcoding and HTS-based microalgae monitoring, as it facilitates more precise species identification compared to light microscopy, as well as provides input for investigating potential interactions amongst different species/groups through simultaneous detection of multiple species/genera.
Collapse
|
4
|
Interspecific Interactions Drive Nonribosomal Peptide Production in Nodularia spumigena. Appl Environ Microbiol 2022; 88:e0096622. [PMID: 35862669 PMCID: PMC9361812 DOI: 10.1128/aem.00966-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nodularia spumigena is a bloom-forming cyanobacterium that produces several classes of nonribosomal peptides (NRPs) that are biologically active; however, the ecological roles of specific NRPs remain largely unknown. Here, we explored the involvement of NRPs produced by N. spumigena in interspecific interactions by coculturing the cyanobacterium and its algal competitors, the diatom Phaeodactylum tricornutum and the cryptomonad Rhodomonas salina, and measuring NRP levels and growth responses in all three species. Contrary to the expected growth suppression in the algae, it was N. spumigena that was adversely affected by the diatom, while the cryptomonad had no effect. Reciprocal effects of N. spumigena on the algae were manifested as the prolonged lag phase in R. salina and growth stimulation in P. tricornutum; however, these responses were largely attributed to elevated pH and not to specific NRPs. Nevertheless, the NRP levels in the cocultures were significantly higher than in the monocultures, with an up to 5-fold upregulation of cell-bound nodularins and exudation of nodularin and anabaenopeptin. Thus, chemically mediated interspecific interactions can promote NRP production and release by cyanobacteria, resulting in increased input of these compounds into the water. IMPORTANCE NRPs were involved in growth responses of both cyanobacteria and algae; however, the primary driver of the growth trajectories was high pH induced by N. spumigena. Thus, the pH-mediated inhibition of eukaryotic phytoplankton may be involved in the bloom formation of N. spumigena. We also report, for the first time, the reciprocal growth inhibition of N. spumigena by diatoms resistant to alkaline conditions. As all species in this study can co-occur in the Baltic Sea during summer, these findings are highly relevant for understanding ecological interactions in planktonic communities in this and other systems experiencing regular cyanobacteria blooms.
Collapse
|
5
|
Wang T, Li J, Jing H, Qin S. Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105622. [PMID: 35429822 DOI: 10.1016/j.marenvres.2022.105622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Marine Synechococcus, a main group of picocyanobacteria, has been ubiquitously observed across the global oceans. Synechococcus exhibits high phylogenetical and phenotypical diversity, and horizontal gene transfer makes its genetic evolution much more intricate. With the development of measurement technologies and analysis methods, the genomic information and niche partition of each Synechococcus lineage tend to be precisely described, but the global analysis is still lacking. Therefore, it is necessary to summarize existing studies and integrate published data to gain a comprehensive understanding of Synechococcus on genetic variation, niche division, and potential functions. In this review, the maximum likelihood trees are constructed based on existing sequence data, including both phylogenetic and pigmentary gene markers. The global distribution characteristics of abundance, lineages, and pigment types are concluded through pooled analysis of more than 700 samples obtained from approximately 50 scientific research cruises. The potential functions of Synechococcus are explored in element cycles and biological interactions. Future work on Synechococcus is suggested to focus on not only elucidating the nature of Synechococcus biodiversity but also demonstrating its interactions with the ecosystem by combining bioinformatics and macroscopic isotope-labeled environmental parameters.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Li
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
6
|
Śliwińska-Wilczewska S, Wiśniewska K, Konarzewska Z, Cieszyńska A, Barreiro Felpeto A, Lewandowska AU, Latała A. The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145681. [PMID: 33940759 DOI: 10.1016/j.scitotenv.2021.145681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Allelopathy is widespread in marine, brackish, and freshwater habitats. Literature data indicate that allelopathy could offer a competitive advantage for some phytoplankton species by reducing the growth of competitors. It is also believed that allelopathy may affect species succession. Thus, allelopathy may play a role in the development of blooms. Over the past few decades, the world's coastal waters have experienced increases in the numbers of cyanobacterial and microalgal blooming events. Understanding how allelopathy is implicated with other biological and environmental factors as a bloom-development mechanism is an important topic for future research. This review focuses on a taxonomic overview of allelopathic cyanobacteria and microalgae, the biological and environmental factors that affect allelochemical production, their role in ecological dynamics, and their physiological modes of action, as well as potential industrial applications of allelopathic compounds.
Collapse
Affiliation(s)
- Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Zofia Konarzewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Cieszyńska
- Institute of Oceanology Polish Academy of Sciences, Department of Marine Physics, Marine Biophysics Laboratory, Sopot, Poland
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anita U Lewandowska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adam Latała
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
7
|
Lage S, Mazur-Marzec H, Gorokhova E. Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Sci Rep 2021; 11:8970. [PMID: 33903638 PMCID: PMC8076297 DOI: 10.1038/s41598-021-88361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
Collapse
Affiliation(s)
- Sandra Lage
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden ,grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Hanna Mazur-Marzec
- grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Elena Gorokhova
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
The Importance of Allelopathic Picocyanobacterium Synechococcus sp. on the Abundance, Biomass Formation, and Structure of Phytoplankton Assemblages in Three Freshwater Lakes. Toxins (Basel) 2020; 12:toxins12040259. [PMID: 32316304 PMCID: PMC7232185 DOI: 10.3390/toxins12040259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
The contribution of picocyanobacteria to summer phytoplankton blooms, accompanied by an ecological crisis, is a new phenomenon in Europe. This issue requires careful investigation. We studied allelopathic activity of freshwater picocyanobacterium Synechococcus sp. on phytoplankton assemblages from three freshwater lakes. In this study, the allelopathic activity of the Synechococcus sp. on the total abundance, biomass, as well as structure of the phytoplankton assemblages were investigated. Our results indicated that addition of exudates obtained from Synechococcus sp. affected the number of cells and biomass of the phytoplankton communities; the degree of inhibition or stimulation was different for each species, causing a change in the phytoplankton abundance and dominance during the experiment. We observed that some group of organisms (especially cyanobacteria from the genus Aphanothece, Limnothrix, Microcystis, and Synechococcus) showed tolerance for allelopathic compounds produced and released by Synechococcus sp. It is also worth noting that in some samples, Bacillariophyceae (e.g., Amphora pediculus, Navicula pygmaea, and Nitzschia paleacea) were completely eliminated in the experimental treatments, while present in the controls. This work demonstrated that the allelopathic activity exhibited by the Synechococcus sp. is probably one of the major competitive strategies affecting some of the coexisting phytoplankton species in freshwater ecosystems. To our best knowledge this is the first report of the allelopathic activity of Synechococcus sp. in the freshwater reservoirs, and one of the few published works showing allelopathic properties of freshwater picocyanobacteria on coexisting phytoplankton species.
Collapse
|