1
|
Bannenberg JW, Boeren S, Zwietering MH, Abee T, den Besten HMW. Insight in lag phase of Listeria monocytogenes during enrichment through proteomic and transcriptomic responses. Food Res Int 2024; 175:113609. [PMID: 38128973 DOI: 10.1016/j.foodres.2023.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
The dynamics of the enrichment-based detection procedure of the foodborne pathogen Listeria monocytogenes from food still remains poorly understood. This enrichment is crucial in the reliable detection of this pathogen and more insight into the recovery mechanism during this step is important to advance our understanding of lag phase behaviour during enrichment. In this study we combined transcriptomic and proteomic analyses to better understand the physiological processes within the lag phase of L. monocytogenes during enrichment. Upon transfer of BHI-cultured stationary phase L. monocytogenes cells to half-Fraser enrichment broth (HFB), motility-associated genes and proteins were downregulated, while expression of metal uptake transporters, resuscitation-promoting factors that stimulate growth from dormancy, antibiotic efflux pumps and oxidative stress proteins were upregulated. Next to this, when cells with a heat stress history were cultured in enrichment broth, proteins necessary for recovery were upregulated with functions in DNA-damage repair, protein refolding, cell-wall repair, and zinc transport. Proteomic results pointed to possible factors that support shortening the lag duration, including the addition of 10 µM zinc and the addition of spent HFB containing presumed concentrations of resuscitation-promoting factors. However, these interventions did not lead to biologically relevant reduction of lag phase. Also, when cells were enriched in spent HFB, final cell concentrations were similar to enrichments in fresh HFB, indicating that the enrichment broth seems not to lack critical substrates. Concludingly, this study gives insight into the proteomic changes in the lag phase during enrichment and shows that supplementation of HFB is not the best strategy to optimize the current enrichment method.
Collapse
Affiliation(s)
- Jasper W Bannenberg
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel H Zwietering
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Tasneem M, Gupta SD, Momin MB, Hossain KM, Osman TB, Rabbi MF. In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system. Genomics Inform 2023; 21:e7. [PMID: 37037465 PMCID: PMC10085738 DOI: 10.5808/gi.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 04/03/2023] Open
Abstract
The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TA) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TA PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TA systems create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.
Collapse
Affiliation(s)
- Maisha Tasneem
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shipan Das Gupta
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Monira Binte Momin
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Kazi Modasser Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Tasnim Binta Osman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Fazley Rabbi
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Corresponding author: E-mail:
| |
Collapse
|
3
|
Chmielowska C, Korsak D, Chapkauskaitse E, Decewicz P, Lasek R, Szuplewska M, Bartosik D. Plasmidome of Listeria spp.-The repA-Family Business. Int J Mol Sci 2021; 22:ijms221910320. [PMID: 34638661 PMCID: PMC8508797 DOI: 10.3390/ijms221910320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.
Collapse
Affiliation(s)
- Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| | - Dorota Korsak
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Elvira Chapkauskaitse
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| |
Collapse
|
4
|
Targeting Type II Toxin-Antitoxin Systems as Antibacterial Strategies. Toxins (Basel) 2020; 12:toxins12090568. [PMID: 32899634 PMCID: PMC7551001 DOI: 10.3390/toxins12090568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
The identification of novel targets for antimicrobial agents is crucial for combating infectious diseases caused by evolving bacterial pathogens. Components of bacterial toxin–antitoxin (TA) systems have been recognized as promising therapeutic targets. These widespread genetic modules are usually composed of two genes that encode a toxic protein targeting an essential cellular process and an antitoxin that counteracts the activity of the toxin. Uncontrolled toxin expression may elicit a bactericidal effect, so they may be considered “intracellular molecular bombs” that can lead to elimination of their host cells. Based on the molecular nature of antitoxins and their mode of interaction with toxins, TA systems have been classified into six groups. The most prevalent are type II TA systems. Due to their ubiquity among clinical isolates of pathogenic bacteria and the essential processes targeted, they are promising candidates for the development of novel antimicrobial strategies. In this review, we describe the distribution of type II TA systems in clinically relevant human pathogens, examine how these systems could be developed as the targets for novel antibacterials, and discuss possible undesirable effects of such therapeutic intervention, such as the induction of persister cells, biofilm formation and toxicity to eukaryotic cells.
Collapse
|