1
|
Wan L, Huang R, Zhou Y, Guo J, Jiao Y, Gao J. Effects of Ciprofloxacin on the Production and Composition of Cellular Microcystins in Microcystis aeruginosa. TOXICS 2024; 12:759. [PMID: 39453179 PMCID: PMC11511219 DOI: 10.3390/toxics12100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Antibiotics can affect the photosynthetic system of Microcystis, potentially altering the balance of carbon and nitrogen, which may influence the synthesis of different microcystin (MC) congeners. However, the regulatory mechanisms by which antibiotics affect the synthesis of various MC congeners in Microcystis remain unknown. In this study, the effects of ciprofloxacin (CIP) on the growth, carbon and nitrogen balance, amino acid composition, mcyB gene expression, and production of different MC congeners were investigated in two toxin-producing strains of Microcystis aeruginosa. The results show that CIP exposure significantly inhibited the growth of both strains, achieving an inhibition rate of 71.75% in FACHB-315 and 41.13% in FACHB-915 at 8 μg/L CIP by the end of the cultivation. The intracellular C:N ratio in FACHB-315 increased by 51.47%, while no significant change was observed in FACHB-915. The levels of leucine, tyrosine, and arginine, as identified and quantified by UPLC-MS/MS, were significantly altered at higher CIP concentrations, leading to a reduction in leucine percentage and a notable increase in tyrosine in both strains, which contributed to a reduction in MC-LR proportion and an increase in MC-RR and MC-YR proportion. Additionally, the expression of the mcyB gene was upregulated by as much as 5.57 times, indicating that antibiotic stress could enhance MC synthesis at the genetic level, contributing to the increased toxicity of cyanobacteria. These findings emphasize the significant role of CIP in the biochemical processes of M. aeruginosa, particularly in MC synthesis and composition, providing valuable insights into the ecological risks posed by antibiotics and harmful cyanobacteria.
Collapse
Affiliation(s)
- Liang Wan
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Rong Huang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yan Zhou
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Jiahao Guo
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yiying Jiao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Jian Gao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
2
|
Bi X, Wei P, Wang Q, Duan L, Dai W, Chen R, Zhang D. Duplex Real-Time Fluorescent Quantitative PCR Assays for the Detection of Toxigenic Microcystis Genotypes Based on SNP/InDel Variation in mcy Gene Cluster. Curr Microbiol 2024; 81:275. [PMID: 39020143 DOI: 10.1007/s00284-024-03797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
In this study, the toxigenic characteristics of 14 strains of Microcystis were analyzed, and single nucleotide polymorphism (SNP) and insertion/deletion (InDel) loci in microcystin synthetase (mcy) gene clusters were screened. Based on SNP and InDel loci associated with the toxigenic characteristics, primers and TaqMan or Cycling fluorescent probes were designed to develop duplex real-time fluorescent quantitative PCR (FQ-PCR) assays. After evaluating specificity and sensitivity, these assays were applied to detect the toxigenic Microcystis genotypes in a shrimp pond where Microcystis blooms occurred. The results showed a total of 2155 SNP loci and 66 InDel loci were obtained, of which 12 SNP loci and 5 InDel loci were associated with the toxigenic characteristics. Three duplex real-time FQ-PCR assays were developed, each of which could quantify two genotypes of toxigenic Microcystis. These FQ-PCR assays were highly specific, and two Cycling assays were more sensitive than TaqMan assay. In the shrimp pond, six genotypes of toxigenic Microcystis were detected using the developed FQ-PCR assays, indicating that above genotyping assays have the potential for quantitative analysis of the toxigenic Microcystis genotypes in natural water.
Collapse
Affiliation(s)
- Xiangdong Bi
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lijin Duan
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Wei Dai
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China.
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Dajuan Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
3
|
Ajayan KV, Chaithra PJ, Sridharan K, Sruthi P, Harikrishnan E, Harilal CC. Synergistic influence of iodine and hydrogen peroxide towards the degradation of harmful algal bloom of Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2023; 237:116926. [PMID: 37598850 DOI: 10.1016/j.envres.2023.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Cyanobacterial blooming due to the influence of temperature and increased nutrients in ponds/lakes aided by the runoff from agricultural lands, is a serious environmental issue. The presence of cyanotoxins in water may poison the health of aquatic organisms, animals, and humans. In this study, we focus on chemical assisted degradation of Microcystis aeruginosa- an alga that is of special relevance owing to its consistent blooming, especially in tropical regions. The study aims to ascertain the individual iodine (I) and hydrogen peroxide (H2O2) and their combination (hereinafter referred to as IH) effects on the degradation of Microcystis aeruginosa. As expected, the collected pond water revealed the presence of metal ions viz., Ni, Zn, Pb, Cu and Mn, which enriched the blooming of M. aeruginosa. Interestingly, a complete rupture of the cells - pigment loss, biochemical degradation and oxidative damage-was observed by the IH solution after exposure for ∼9 h under ambient conditions. In comparison to control (original water without chemicals), the addition IH completely eliminated the pigments phycocyanin (99.5%) and allophycocyanin (98%), and degraded ∼81% and 91% of carbohydrates and proteins, respectively due to the synergistic action of I and H. Superior degradation of algae through a simple and eco-friendly approach presented in this study could be explored more effectively towards its large-scale applicability.
Collapse
Affiliation(s)
- K V Ajayan
- Biomass Laboratory, Environmental Science Division, Department of Botany, University of Calicut, Tenjipalam, Malappuram, Kerala, 673 635, India.
| | - P J Chaithra
- Department of Environmental Science, University of Calicut, Tenjipalam, Malappuram, Kerala, 673635, India
| | - Kishore Sridharan
- Department of Nanoscience and Technology, University of Calicut, Tenjipalam, Malappuram, Kerala, 673635, India
| | - P Sruthi
- PG Department of Botany, Payyanur College, Kannur University, Edat, 670327, Kerala, India
| | - E Harikrishnan
- PG Department of Botany, Payyanur College, Kannur University, Edat, 670327, Kerala, India
| | - C C Harilal
- Biomass Laboratory, Environmental Science Division, Department of Botany, University of Calicut, Tenjipalam, Malappuram, Kerala, 673 635, India; Department of Environmental Science, University of Calicut, Tenjipalam, Malappuram, Kerala, 673635, India.
| |
Collapse
|
4
|
Olivan-Muro I, Sarasa-Buisan C, Guio J, Arenas J, Sevilla E, Fillat MF. Unbalancing Zur (FurB)-mediated homeostasis in Anabaena sp. PCC7120: Consequences on metal trafficking, heterocyst development and biofilm formation. Environ Microbiol 2023; 25:2142-2162. [PMID: 37315963 DOI: 10.1111/1462-2920.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Zinc is required for the activity of many enzymes and plays an essential role in gene regulation and redox homeostasis. In Anabaena (Nostoc) sp. PCC7120, the genes involved in zinc uptake and transport are controlled by the metalloregulator Zur (FurB). Comparative transcriptomics of a zur mutant (Δzur) with the parent strain unveiled unexpected links between zinc homeostasis and other metabolic pathways. A notable increase in the transcription of numerous desiccation tolerance-related genes, including genes involved in the synthesis of trehalose and the transference of saccharide moieties, among many others, was detected. Biofilm formation analysis under static conditions revealed a reduced capacity of Δzur filaments to form biofilms compared to the parent strain, and such capacity was enhanced when Zur was overexpressed. Furthermore, microscopy analysis revealed that zur expression is required for the correct formation of the envelope polysaccharide layer in the heterocyst, as Δzur cells showed reduced staining with alcian blue compared to Anabaena sp. PCC7120. We suggest that Zur is an important regulator of the enzymes involved in the synthesis and transport of the envelope polysaccharide layer, influencing heterocyst development and biofilm formation, both relevant processes for cell division and interaction with substrates in its ecological niche.
Collapse
Affiliation(s)
- Irene Olivan-Muro
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Jorge Guio
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Jesús Arenas
- Department of Animal Pathology, Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Emma Sevilla
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Maria F Fillat
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
5
|
Wiśniewska K, Śliwińska-Wilczewska S, Savoie M, Lewandowska AU. Quantitative and qualitative variability of airborne cyanobacteria and microalgae and their toxins in the coastal zone of the Baltic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154152. [PMID: 35227725 DOI: 10.1016/j.scitotenv.2022.154152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Apart from viruses and bacteria, cyanobacteria and microalgae present in the atmosphere may pose a threat to the health of humans by inducing illnesses and diseases. Yet, they play an important role in the environment, influencing the Earth's radiation budget by absorbing and scattering solar radiation. The present study determined the daily and seasonal qualitative and qualitative variabilities of airborne cyanobacteria and microalgae during both vegetative and non-vegetative seasons in the coastal zone of the Baltic Sea. Samples were collected from January to December 2020 with a Tisch six-stage microbiological impactor which was used as a substitute for the respiratory tract. The stage levels of the impactor represented the respiratory tract and reproduced lung penetration by airborne particles, which allowed us to assess penetration of cyanobacteria and microalgae to the deepest parts of the human respiratory system. A total of 296 samples of cyanobacteria and microalgae were collected during the day and 276 samples during the night. The results showed that cyanobacteria and microalgae were present in the air all year, and their maximum abundance was 1685 cells m-3 in July. Furthermore, the ability of these microorganisms to produce the toxin microcystin-LR (MC-LR) was confirmed, which has a high potential negative impact on human health. MC-LR has been found in Nostoc sp., Pseudanabaena sp., Leptolyngbya sp., Synechococcus sp., Gloeocapsa sp., Aphanothece sp., and Rivularia sp. maintained at our Culture Collection of Airborne Algae (CCAA), as well as from air samples. The highest concentrations of MC-LR were recorded in airborne Synechococcus sp. CCAA 46 and amounted to as much as 420 fg cell-1. In turn, the highest mean concentration of 0.95 μg L-1 for MC-LR was recorded in an air sample taken in May. This research expands the knowledge on cyanobacteria and microalgae present in the atmosphere in the coastal zone of the southern Baltic Sea. We propose these microorganisms be used as indicators for further research on bioaerosols, which are potentially dangerous to human health.
Collapse
Affiliation(s)
- Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Mireille Savoie
- Department of Biology, Mount Allison University, 62 York St, Sackville, NB E4L 1E2, Canada
| | - Anita U Lewandowska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
6
|
Wu Y, Yang G, Xu L, Yu R, Huang X, Qiu W, Guo Y. Effects of zinc and iron on the abundance of Microcystis in Lake Taihu under green light and turbulence conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37791-37803. [PMID: 35067881 DOI: 10.1007/s11356-021-18089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Trace element is one of the important factors affecting the growth of Microcystis. The effects of zinc (0.4 mg/L) and iron (2 mg/L) on the abundance of Microcystis in Lake Taihu were investigated under continuous turbulence and green light conditions in a microcosm experiment. The study results showed that the abundance of Microcystis in the zinc treatment and the iron treatment group was 8.30% and 214% of that in the control group at the end of the experiment, respectively. The proportion of Cyanobacteria in the total phytoplankton biomass in the control, iron treatment, and zinc treatment group decreased from 99.99% at the beginning of the experiment to 13%, 18%, and 1% at the end of the experiment, respectively. At the end of the microcosm experiment, the phytoplankton community was dominated by Bacillariophyta in the control group, accounting for 63%, but it was dominated by Chlorophyta in the zinc treatment and the iron treatment group, accounting for 89% and 42%, respectively. The study results showed that under green light and turbulence, 0.4 mg/L zinc remarkably decreased the abundance of Microcystis, but 2 mg/L iron effectively increased the number of Microcystis and other algae. This research results provided a new idea for controlling Microcystis blooms.
Collapse
Affiliation(s)
- Yunrui Wu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guijun Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Lei Xu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ruipeng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaofeng Huang
- Wuxi Taihu Lake Restoration Co., Ltd, Wuxi, 214062, China
| | - Weijian Qiu
- Wuxi Taihu Lake Restoration Co., Ltd, Wuxi, 214062, China
| | - Yun Guo
- Wuxi Taihu Lake Restoration Co., Ltd, Wuxi, 214062, China
| |
Collapse
|
7
|
Changes in Growth, Photosynthesis Performance, Pigments, and Toxin Contents of Bloom-Forming Cyanobacteria after Exposure to Macroalgal Allelochemicals. Toxins (Basel) 2021; 13:toxins13080589. [PMID: 34437460 PMCID: PMC8402365 DOI: 10.3390/toxins13080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Macroalgae can directly restrict the growth of various phytoplankton species by releasing allelopathic compounds; therefore, considerable attention should be paid to the allelopathic potential of these organisms against harmful and bloom-forming cyanobacteria. The main aim of this study was to demonstrate for the first time the allelopathic activity of Ulva intestinalis on the growth, the fluorescence parameters: the maximum PSII quantum efficiency (Fv/Fm) and the effective quantum yield of PSII photochemistry (ΦPSII), the chlorophyll a (Chl a) and carotenoid (Car) content, and the microcystin-LR (MC-LR) and phenol content of three bloom-forming cyanobacteria, Aphanizomenon sp., Nodularia spumigena, and Nostoc sp. We found both negative and positive allelopathic effects of U. intestinalis on tested cyanobacteria. The study clearly showed that the addition of the filtrate of U. intestinalis significantly inhibited growth, decreased pigment content and Fv/Fm and ΦPSII values of N. spumigena and Nostoc sp., and stimulated Aphanizomenon sp. The addition of different concentrations of aqueous extract also stimulated the cyanobacterial growth. It was also shown that the addition of extract obtained from U. intestinalis caused a significant decrease in the MC-LR content in Nostoc sp. cells. Moreover, it the phenol content in N. spumigena cells was increased. On the other hand, the cell-specific phenol content for Aphanizomenon sp. decreased due to the addition of the filtrate. In this work, we demonstrated that the allelopathic effect of U. intestinalis depends on the target species’ identity as well as the type of allelopathic method used. The study of the allelopathic Baltic macroalgae may help to identify their possible role as a significant biological factor influencing harmful cyanobacterial blooms in brackish ecosystems.
Collapse
|
8
|
Sarker I, Moore LR, Tetu SG. Investigating zinc toxicity responses in marine Prochlorococcus and Synechococcus. MICROBIOLOGY-SGM 2021; 167. [PMID: 34170816 PMCID: PMC8374608 DOI: 10.1099/mic.0.001064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Marine plastic pollution is a growing concern worldwide and has the potential to impact marine life via leaching of chemicals, with zinc (Zn), a common plastic additive, observed at particularly high levels in plastic leachates in previous studies. At this time, however, little is known regarding how elevated Zn affects key groups of marine primary producers. Marine cyanobacterial genera Prochlorococcus and Synechococcus are considered to be some of the most abundant oxygenic phototrophs on earth, and together contribute significantly to oceanic primary productivity. Here we set out to investigate how two Prochlorococcus (MIT9312 and NATL2A) and two Synechococcus (CC9311 and WH8102) strains, representative of diverse ecological niches, respond to exposure to high Zn concentrations. The two genera showed differences in the timing and degree of growth and physiological responses to elevated Zn levels, with Prochlorococcus strains showing declines in their growth rate and photophysiology following exposure to 27 µg l-1 Zn, while Synechococcus CC9311 and WH8102 growth rates declined significantly on exposure to 52 and 152 µg l-1 Zn, respectively. Differences were also observed in each strain's capacity to maintain cell wall integrity on exposure to different levels of Zn. Our results indicate that excess Zn has the potential to pose a challenge to some marine picocyanobacteria and highlights the need to better understand how different marine Prochlorococcus and Synechococcus strains may respond to increasing concentrations of Zn in some marine regions.
Collapse
Affiliation(s)
- Indrani Sarker
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,MQ Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Lisa R Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,MQ Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6545-6556. [PMID: 33522805 DOI: 10.1021/acsami.0c21493] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe surface-enhanced Raman spectroscopy (SERS) aptasensors that can indirectly detect MC-LR and MC-RR, individually or simultaneously, in natural water and in algal culture. The sensor is constructed from nanoparticles composed of successive layers of Au core-SERS label-silver shell-gold shell (Au@label@Ag@Au NPs), functionalized on the outer Au surface by MC-LR and/or MC-RR aptamers. These NPs are immobilized on asymmetric Au nanoflowers (AuNFs) dispersed on planar silicon substrates through DNA hybridization of the aptamers and capture DNA sequences with which the AuNFs are functionalized, thereby forming core-satellite nanostructures on the substrates. This construction led to greater electromagnetic (EM) field enhancement of the Raman label-modified region, as supported by finite-difference time-domain (FDTD) simulations of the core-satellite assembly. In the presence of MC-LR and/or MC-RR, the aptamer-functionalized NPs dissociate from the AuNFs because of the stronger affinity of the aptamers with the MCs, which decreases the SERS signal, thus allowing indirect detection of the MCs. The improved SERS sensitivity significantly decreased the limit of detection (LOD) for separate MC-LR detection (0.8 pM) and for multiplex detection (1.5 pM for MC-LR and 1.3 pM for MC-RR), compared with other recently reported SERS-based methods for MC-LR detection. The aptasensors show excellent selectivity to MC-LR/MC-RR and excellent recoveries (96-105%). The use of these SERS aptasensors to monitor MC-LR production over 1 week in a culture medium of M. aeruginosa cells demonstrates the applicability of the sensors in a realistic environment.
Collapse
Affiliation(s)
- Xiaojun Luo
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Xingjuan Zhao
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Gregory Q Wallace
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Marie-Hélène Brunet
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Kevin J Wilkinson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - C Geraldine Bazuin
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Jean-Francois Masson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
10
|
Jos A, Cameán AM. Freshwater Algal Toxins: Monitoring and Toxicity Profile. Toxins (Basel) 2020; 12:toxins12100653. [PMID: 33066068 PMCID: PMC7600395 DOI: 10.3390/toxins12100653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
|