1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Yang X, Zheng H, Niu J, Chen X, Li H, Rao Z, Guo Y, Zhang W, Wang Z. Curcumin alleviates zearalenone-induced liver injury in mice by scavenging reactive oxygen species and inhibiting mitochondrial apoptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116343. [PMID: 38657456 DOI: 10.1016/j.ecoenv.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Curcumin (CUR) is a compound extracted from turmeric that has a variety of functions including antioxidant and anti-inflammatory. As an estrogen-like mycotoxin, zearalenone (ZEN) not only attacks the reproductive system, but also has toxic effects on the liver. However, whether CUR can alleviate ZEN-induced liver injury remains unclear. This paper aims to investigate the protective effect of CUR against ZEN-induced liver injury in mice and explore the molecular mechanism involved. BALB/c mice were randomly divided into control (CON) group, CUR group (200 mg/kg b. w. CUR), ZEN group (40 mg/kg b. w. ZEN) and CUR+ZEN group (200 mg/kg b. w. CUR+40 mg/kg b. w. ZEN). 28 d after ZEN exposure and CUR treatment, blood and liver samples were collected for subsequent testing. The results showed that CUR reversed ZEN-induced hepatocyte swelling and necrosis in mice. It significantly reduced the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice (p < 0.05). In addition, CUR significantly reduced hepatic ROS, malondialdehyde, hydrogen peroxide and apoptosis levels in mice (p < 0.05). Quantitative RT-PCR and Western blot results showed that CUR significantly reduced the expression of Bax and Caspase3, and reversed the increase of Nrf2, HO-1 and NQO1 expression in the liver of mice induced by ZEN (p < 0.05). In conclusion, CUR alleviated ZEN-induced liver injury in mice by scavenging ROS and inhibiting the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Hao Zheng
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Junlong Niu
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Xiaoshuang Chen
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Hongfei Li
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Zhiyong Rao
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Yongpeng Guo
- Animal Nutrition Control Laboratory of Henan Agricultural University, China
| | - Wei Zhang
- Animal Nutrition Control Laboratory of Henan Agricultural University, China.
| | - Zhixiang Wang
- Animal Nutrition Control Laboratory of Henan Agricultural University, China.
| |
Collapse
|
3
|
Li Y, Zhu C, Yao J, Zhu C, Li Z, Liu HY, Zhu M, Li K, Ahmed AA, Li S, Hu P, Cai D. Lithocholic Acid Alleviates Deoxynivalenol-Induced Inflammation and Oxidative Stress via PPARγ-Mediated Epigenetically Transcriptional Reprogramming in Porcine Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5452-5462. [PMID: 38428036 DOI: 10.1021/acs.jafc.3c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Deoxynivalenol (DON) is a common mycotoxin that induces intestinal inflammation and oxidative damage in humans and animals. Given that lithocholic acid (LCA) has been suggested to inhibit intestinal inflammation, we aimed to investigate the protective effects of LCA on DON-exposed porcine intestinal epithelial IPI-2I cells and the underlying mechanisms. Indeed, LCA rescued DON-induced cell death in IPI-2I cells and reduced DON-stimulated inflammatory cytokine levels and oxidative stress. Importantly, the nuclear receptor PPARγ was identified as a key transcriptional factor involved in the DON-induced inflammation and oxidative stress processes in IPI-2I cells. The PPARγ function was found compromised, likely due to the hyperphosphorylation of the p38 and ERK signaling pathways. In contrast, the DON-induced inflammatory responses and oxidative stress were restrained by LCA via PPARγ-mediated reprogramming of the core inflammatory and antioxidant genes. Notably, the PPARγ-modulated transcriptional regulations could be attributed to the altered recruitments of coactivator SRC-1/3 and corepressor NCOR1/2, along with the modified histone marks H3K27ac and H3K18la. This study emphasizes the protective actions of LCA on DON-induced inflammatory damage and oxidative stress in intestinal epithelial cells via PPARγ-mediated epigenetically transcriptional reprogramming, including histone acetylation and lactylation.
Collapse
Affiliation(s)
- Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Abdelkareem A Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Natural Resources, Gaborone 0027, Botswana
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| |
Collapse
|
4
|
Wan S, Pan D, Su M, Wang S, Wang Y, Xu D, Sun J, Xie W, Wang X, Yan Q, Xia H, Yang C, Sun G. Association between socio-demographic factors, lifestyle, eating habits and hypertension risk among middle-aged and older rural Chinese adults. Nutr Metab Cardiovasc Dis 2024; 34:726-737. [PMID: 38161126 DOI: 10.1016/j.numecd.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Hypertension is a global health issue with increasing prevalence. This study aimed to understand the epidemiological characteristics and influencing factors of hypertension in rural Chinese populations and help develop effective prevention and control strategies. METHODS AND RESULTS This cross-sectional study used database from the Early Diagnosis and Early Treatment Project of Esophageal Cancer conducted in a rural population from September 2012 to December 2017. A total of 10,111 subjects aged 35-75 years residing in Huai'an District, Huai'an City, Jiangsu Province for at least three years were included. Unconditional univariate and multivariate logistic regression models were performed to evaluate the association between socio-demographic information, lifestyle habits, dietary characteristics and the risk of hypertension. The prevalence of hypertension was 34.32 % in this rural population. Men and older individuals are more likely to have hypertension when compared with women and young individuals, respectively. Factors associated with an increased risk of hypertension included: fast eating speed, a high-salt diet (both currently and ten years ago), a high-spicy diet ten years ago, high BMI, poor educational attainment, preference for fatty meats, hot diet, green tea drinking, intake of pickled potherb mustard and corn flour, family smoking and alcohol consumption. Light smoking in males, consumption of fruits, adzuki bean, and pork liver were associated with reduced risk of hypertension. CONCLUSIONS The study identified some factors, including eat habits and lifestyle, associated with hypertension risk, and highlighted the need for targeted policies and interventions in rural China to address potential risk factors for hypertension.
Collapse
Affiliation(s)
- Shiyun Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China.
| | - Ming Su
- Huai'an District Center for Disease Control and Prevention, 223200, Huai'an, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China; School of Medicine, Xizang Minzu University, 712082, Xianyang, PR China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China
| | - Jihan Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China
| | - Wei Xie
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, PR China
| | - Xin Wang
- Huai'an District Center for Disease Control and Prevention, 223200, Huai'an, PR China
| | - Qingyang Yan
- Huai'an District Center for Disease Control and Prevention, 223200, Huai'an, PR China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China; Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009, Nanjing, PR China.
| |
Collapse
|
5
|
Immunohistochemical Expression (IE) of Oestrogen Receptors in the Intestines of Prepubertal Gilts Exposed to Zearalenone. Toxins (Basel) 2023; 15:toxins15020122. [PMID: 36828436 PMCID: PMC9967477 DOI: 10.3390/toxins15020122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to determine if a low monotonic dose of zearalenone (ZEN) affects the immunohistochemical expression (IE) of oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) in the intestines of sexually immature gilts. Group C (control group; n = 18) gilts were given a placebo. Group E (experimental group; n = 18) gilts were dosed orally with 40 μg ZEN /kg body weight (BW), each day before morning feeding. Samples of intestinal tissue were collected post-mortem six times. The samples were stained to analyse the IE of ERα and Erβ in the scanned slides. The strongest response was observed in ERα in the duodenum (90.387-average % of cells with ERα expression) and in ERβ in the descending colon (84.329-average % of cells with ERβ expression); the opposite response was recorded in the caecum (2.484-average % of cells with ERα expression) and the ascending colon (2.448-average % of cells with ERα expression); on the first two dates of exposure, the digestive tract had to adapt to ZEN in feed. The results of this study, supported by a mechanistic interpretation of previous research findings, suggest that ZEN performs numerous functions in the digestive tract.
Collapse
|
6
|
Hosseini A, Alipour A, Baradaran Rahimi V, Askari VR. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. Biofactors 2022; 49:322-350. [PMID: 36471898 DOI: 10.1002/biof.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different toxins, including chemicals and natural, can be entered from various routes and influence human health. Herbal medicines and their active components can attenuate the toxicity of agents via multiple mechanisms. For example, kaempferol, as a flavonoid, can be found in fruits and vegetables, and has an essential role in improving disorders such as cardiovascular disorders, neurological diseases, cancer, pain, and inflammation situations. The beneficial effects of kaempferol may be related to the inhibition of oxidative stress, attenuation of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. This flavonoid boasts a wide spectrum of toxin targeting effects in tissue fibrosis, inflammation, and oxidative stress thus shows promising protective effects against natural and chemical toxin induced hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, lung, and intestinal in the in vitro and in vivo setting. The most remarkable aspect of kaempferol is that it does not focus its efforts on just one organ or one molecular pathway. Although its significance as a treatment option remains questionable and requires more clinical studies, it seems to be a low-risk therapeutic option. It is crucial to emphasize that kaempferol's poor bioavailability is a significant barrier to its use as a therapeutic option. Nanotechnology can be a promising way to overcome this challenge, reviving optimism in using kaempferol as a viable treatment agent against toxin-induced disorders.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Alipour
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Gerdemann A, Behrens M, Esselen M, Humpf HU. Metabolic profiling as a powerful tool for the analysis of cellular alterations caused by 20 mycotoxins in HepG2 cells. Arch Toxicol 2022; 96:2983-2998. [PMID: 35932296 PMCID: PMC9525358 DOI: 10.1007/s00204-022-03348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Mycotoxins are secondary fungal metabolites which exhibit toxic effects in low concentrations. Several mycotoxins are described as carcinogenic or immunosuppressive, but their underlying modes of action especially on molecular level have not yet been entirely elucidated. Metabolic profiling as part of the omics methods is a powerful tool to study the toxicity and the mode of action of xenobiotics. The use of hydrophilic interaction chromatography in combination with targeted mass spectrometric detection enables the selective and sensitive analysis of more than 100 polar and ionic metabolites and allows the evaluation of metabolic alterations caused by xenobiotics such as mycotoxins. For metabolic profiling, the hepato-cellular carcinoma cell line HepG2 was treated with sub-cytotoxic concentrations of 20 mycotoxins. Moniliformin and citrinin significantly affected target elements of the citric acid cycle, but also influenced glycolytic pathways and energy metabolism. Penitrem A, zearalenone, and T2 toxin mainly interfered with the urea cycle and the amino acid homeostasis. The formation of reactive oxygen species seemed to be influenced by T2 toxin and gliotoxin. Glycolysis was altered by ochratoxin A and DNA synthesis was affected by several mycotoxins. The observed effects were not limited to these metabolic reactions as the metabolic pathways are closely interrelated. In general, metabolic profiling proved to be a highly sensitive tool for hazard identification in comparison to single-target cytotoxicity assays as metabolic alterations were already observed at sub-toxic concentrations. Metabolic profiling could therefore be a powerful tool for the overall evaluation of the toxic properties of xenobiotics.
Collapse
Affiliation(s)
- Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
| |
Collapse
|
8
|
Jakimiuk E, Radwińska J, Woźny M, Pomianowski A, Brzuzan P, Wojtacha P, Obremski K, Zielonka Ł. The Influence of Zearalenone on Selected Hemostatic Parameters in Sexually Immature Gilts. Toxins (Basel) 2021; 13:625. [PMID: 34564628 PMCID: PMC8473075 DOI: 10.3390/toxins13090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Vascular toxicity induced by xenobiotics is associated with dysfunctions or damage to endothelial cells, changes in vascular permeability or dysregulation of the vascular redox state. The aim of this study was to determine whether per os administration of zearalenone (ZEN) influences selected hemostatic parameters in prepubertal gilts. This study was performed on female gilts divided into a control group which received placebo and an experimental group which received ZEN at a dose of 5.0 µg·kg-1 b.w. × day-1. On days 14, 28 and 42, blood samples were collected from the animals for analyses of hematological, coagulation and fibrinolysis parameters, nitric oxide, von Willebrand factor antigen content and catalase activity. The results demonstrated that the treatment of gilts with ZEN at a dose below no observable adverse effect level did not affect the primary hemostasis and the blood coagulation cascade. However, ZEN could have temporarily affected the selected indicators of endothelial cell function (increase of von Willebrand factor, decrease of nitric oxide levels) and the oxidative status plasma (decrease of catalase activity) of the exposed gilts. In summary, these results suggest that the adaptive response to ZEN-exposure can induce a transient imbalance in the vascular system by acting on vascular endothelial cells.
Collapse
Affiliation(s)
- Ewa Jakimiuk
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| | - Justyna Radwińska
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland; (J.R.); (A.P.)
| | - Maciej Woźny
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709 Olsztyn, Poland;
| | - Andrzej Pomianowski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland; (J.R.); (A.P.)
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709 Olsztyn, Poland;
| | - Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-726 Olsztyn, Poland;
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| |
Collapse
|
9
|
Mycotoxin Zearalenone Attenuates Innate Immune Responses and Suppresses NLRP3 Inflammasome Activation in LPS-Activated Macrophages. Toxins (Basel) 2021; 13:toxins13090593. [PMID: 34564598 PMCID: PMC8473227 DOI: 10.3390/toxins13090593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/07/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin that has several adverse effects on most mammalian species. However, the effects of ZEA on macrophage-mediated innate immunity during infection have not been examined. In the present study, bacterial lipopolysaccharides (LPS) were used to induce the activation of macrophages and evaluate the effects of ZEA on the inflammatory responses and inflammation-associated signaling pathways. The experimental results indicated that ZEA suppressed LPS-activated inflammatory responses by macrophages including attenuating the production of proinflammatory mediators (nitric oxide (NO) and prostaglandin E2 (PGE2)), decreased the secretion of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6), inhibited the activation of c-Jun amino-terminal kinase (JNK), p38 and nuclear factor-κB (NF-κB) signaling pathways, and repressed the nucleotide-binding and oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. These results indicated that mycotoxin ZEA attenuates macrophage-mediated innate immunity upon LPS stimulation, suggesting that the intake of mycotoxin ZEA-contaminated food might result in decreasing innate immunity, which has a higher risk of adverse effects during infection.
Collapse
|
10
|
Gajęcka M, Majewski MS, Zielonka Ł, Grzegorzewski W, Onyszek E, Lisieska-Żołnierczyk S, Juśkiewicz J, Babuchowski A, Gajęcki MT. Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts. Toxins (Basel) 2021; 13:toxins13060396. [PMID: 34199438 PMCID: PMC8228058 DOI: 10.3390/toxins13060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The carry-over of zearalenone (ZEN) to the myocardium and its effects on coronary vascular reactivity in vivo have not been addressed in the literature to date. Therefore, the objective of this study was to verify the hypothesis that low ZEN doses (MABEL, NOAEL and LOAEL) administered per os to prepubertal gilts for 21 days affect the accumulation of ZEN, α-ZEL and β-ZEL in the myocardium and the reactivity of the porcine coronary arteries to vasoconstrictors: acetylcholine, potassium chloride and vasodilator sodium nitroprusside. The contractile response to acetylcholine in the presence of a cyclooxygenase (COX) inhibitor, indomethacin and / or an endothelial nitric oxide synthase (e-NOS) inhibitor, L-NAME was also studied. The results of this study indicate that the carry-over of ZEN and its metabolites to the myocardium is a highly individualized process that occurs even at very low mycotoxin concentrations. The concentrations of the accumulated ZEN metabolites are inversely proportional to each other due to biotransformation processes. The levels of vasoconstrictors, acetylcholine and potassium chloride, were examined in the left anterior descending branch of the porcine coronary artery after oral administration of ZEN. The LOAEL dose clearly decreased vasoconstriction in response to both potassium chloride and acetylcholine (P < 0.05 for all values) and increased vasodilation in the presence of sodium nitroprusside (P = 0.021). The NOAEL dose significantly increased vasoconstriction caused by acetylcholine (P < 0.04), whereas the MABEL dose did not cause significant changes in the vascular response. Unlike higher doses of ZEN, 5 μg/kg had no negative influence on the vascular system.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
- Correspondence:
| | - Michał S. Majewski
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| | - Waldemar Grzegorzewski
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland;
- Interdisciplinary Center for Preclinical and Clinical Research, Department of Biotechnology, Institute of Biol-ogy and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Po-land
| | - Ewa Onyszek
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Jerzy Juśkiewicz
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| |
Collapse
|
11
|
Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies. Int J Mol Sci 2020; 22:ijms22010217. [PMID: 33379332 PMCID: PMC7794799 DOI: 10.3390/ijms22010217] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, kaempferol (KFL) shows hepatoprotective activity against zearalenone (ZEA)-induced oxidative stress and its underlying mechanisms in in vitro and in vivo models were investigated. Oxidative stress plays a critical role in the pathophysiology of various hepatic ailments and is normally regulated by reactive oxygen species (ROS). ZEA is a mycotoxin known to exert toxicity via inflammation and ROS accumulation. This study aims to explore the protective role of KFL against ZEA-triggered hepatic injury via the PI3K/Akt-regulated Nrf2 pathway. KFL augmented the phosphorylation of PI3K and Akt, which may stimulate antioxidative and antiapoptotic signaling in hepatic cells. KFL upregulated Nrf2 phosphorylation and the expression of antioxidant genes HO-1 and NQO-1 in a dose-dependent manner under ZEA-induced oxidative stress. Nrf2 knockdown via small-interfering RNA (siRNA) inhibited the KFL-mediated defence against ZEA-induced hepatotoxicity. In vivo studies showed that KFL decreased inflammation and lipid peroxidation and increased H2O2 scavenging and biochemical marker enzyme expression. KFL was able to normalize the expression of liver antioxidant enzymes SOD, CAT and GSH and showed a protective effect against ZEA-induced pathophysiology in the livers of mice. These outcomes demonstrate that KFL possesses notable hepatoprotective roles against ZEA-induced damage in vivo and in vitro. These protective properties of KFL may occur through the stimulation of Nrf2/HO-1 cascades and PI3K/Akt signaling.
Collapse
|