1
|
Wang J, Hu J, Pu W, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Discovery, development and optimisation of a novel frog antimicrobial peptide with combined mode of action against drug-resistant bacteria. Comput Struct Biotechnol J 2024; 23:3391-3406. [PMID: 39345903 PMCID: PMC11437748 DOI: 10.1016/j.csbj.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Antimicrobial peptides (AMP) have emerged as promising candidates for addressing the clinical challenges posed by the rapid evolution of antibiotic-resistant microorganisms. Brevinins, a representative frog-derived AMP family, exhibited broad-spectrum antimicrobial activities, attacking great attentions in previous studies. However, their strong haemolytic activity and cytotoxicity, greatly limit their further development. In this work, we identified and characterised a novel brevinin-1 peptide, brevinin-1pl, from the skin secretions of the northern leopard frog, Rana pipiens. Like many brevinins, brevinin-1pl also displayed strong haemolytic activity, resulting in a lower therapeutic index. We employed several bioinformatics tools to analyse the structure and potential membrane interactions of brevinin-1pl, leading to a series of modifications. Among these analogues, des-Ala16-[Lys4]brevinin-1pl exhibited great enhanced therapeutic efficacy in both in vitro and in vivo tests, particularly against some antibiotics-resistant Escherichia coli strains. Mechanistic studies suggest that des-Ala16-[Lys4]brevinin-1pl may exert bactericidal effects through multiple mechanisms, including membrane disruption and DNA binding. Consequently, des-Ala16-[Lys4]brevinin-1pl holds promise as a candidate for the treatment of drug-resistant Escherichia coli infections.
Collapse
Affiliation(s)
- Jingkai Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Jibo Hu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- China Medical University-The Queen's University of Belfast Joint College, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Wenyuan Pu
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- China Medical University-The Queen's University of Belfast Joint College, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
2
|
Phambu N, Sunda-Meya A. Proline-Modified RWn Peptides: Enhanced Antifungal Efficacy and Synergy with Conventional Antibiotics for Combating Resistant Fungal Infections. ACS OMEGA 2024; 9:46627-46633. [PMID: 39583727 PMCID: PMC11579929 DOI: 10.1021/acsomega.4c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Candida albicans (Ca) and Cryptococcus neoformans (Cn) infections pose a growing threat due to rising antifungal resistance. This study explores a new class of antifungal agents, the RWn series (n = 4, 6, 8) peptides. These synthetic peptides were evaluated for their ability to inhibit Ca and Cn growth. All peptides except RW4 displayed antifungal activity, with RW6 exhibiting exceptional potency against Cn. Importantly, the incorporation of a proline residue significantly reduced cytotoxicity while maintaining antifungal activity against Cn for all RWnP peptides. Notably, RW6P demonstrated broad-spectrum activity against both Ca and Cn with low minimum inhibitory concentrations (MICs) and minimal toxicity. Furthermore, combining RW6P with trace amounts of traditional antibiotics (penicillin, vancomycin, and ampicillin) achieved synergistic effects, significantly reducing MICs against both fungi. These findings suggest that RWnP peptides, particularly RW6P, have promising potential as novel antifungal agents due to their high potency, broad-spectrum activity, and ability to resensitize fungi to existing antibiotics.
Collapse
Affiliation(s)
- Nsoki Phambu
- Department
of Chemistry, Tennessee State University, Nashville, Tennessee 37209, United States
| | - Anderson Sunda-Meya
- Department
of Physics, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
3
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
4
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
5
|
Li C, Cai Y, Luo L, Tian G, Wang X, Yan A, Wang L, Wu S, Wu Z, Zhang T, Chen W, Zhang Z. TC-14, a cathelicidin-derived antimicrobial peptide with broad-spectrum antibacterial activity and high safety profile. iScience 2024; 27:110404. [PMID: 39092176 PMCID: PMC11292558 DOI: 10.1016/j.isci.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Cathelicidins, a major class of antimicrobial peptides (AMPs), hold considerable potential for antimicrobial drug development. In the present study, we identified a novel cathelicidin AMP (TC-33) derived from the Chinese tree shrew. Despite TC-33 demonstrating weak antimicrobial activity, the novel peptide TC-14, developed based on its active region, exhibited a 432-fold increase in antimicrobial activity over the parent peptide. Structural analysis revealed that TC-14 adopted an amphipathic α-helical conformation. The bactericidal mechanism of TC-14 involved targeting and disrupting the bacterial membrane, leading to rapid membrane permeabilization and rupture. Furthermore, TC-14 exhibited a high-safety profile, as evidenced by the absence of cytotoxic and hemolytic activities, as well as high biocompatibility and safety in vivo. Of note, its potent antimicrobial activity provided significant protection in a murine model of skin infection. Overall, this study presents TC-14 as a promising drug candidate for antimicrobial drug development.
Collapse
Affiliation(s)
- Chenxi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Lin Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| |
Collapse
|
6
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
7
|
Chen Z, Wang L, He D, Liu Q, Han Q, Zhang J, Zhang AM, Song Y. Exploration of the Antibacterial and Anti-Inflammatory Activity of a Novel Antimicrobial Peptide Brevinin-1BW. Molecules 2024; 29:1534. [PMID: 38611812 PMCID: PMC11013252 DOI: 10.3390/molecules29071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotic resistance has emerged as a grave threat to global public health, leading to an increasing number of treatment failures. Antimicrobial peptides (AMPs) are widely regarded as potential substitutes for traditional antibiotics since they are less likely to induce resistance when used. A novel AMP named Brevinin-1BW (FLPLLAGLAASFLPTIFCKISRKC) was obtained by the Research Center of Molecular Medicine of Yunnan Province from the skin of the Pelophylax nigromaculatus. Brevinia-1BW had effective inhibitory effects on Gram-positive bacteria, with a minimum inhibitory concentration (MIC) of 3.125 μg/mL against Enterococcus faecalis (ATCC 29212) and 6.25 μg/mL against both Staphylococcus aureus (ATCC 25923) and multidrug-resistant Staphylococcus aureus (ATCC 29213) but had weaker inhibitory effects on Gram-negative bacteria, with a MIC of ≥100 μg/mL. Studies using scanning electron microscopy (SEM) and flow cytometry have revealed that it exerts its antibacterial activity by disrupting bacterial membranes. Additionally, it possesses strong biofilm inhibitory and eradication activities as well as significant lipopolysaccharide (LPS)-binding activity. Furthermore, Brevinin-1BW has shown a significant anti-inflammatory effect in LPS-treated RAW264.7 cells. In conclusion, Brevinin-1BW is anticipated to be a promising clinical agent with potent anti-Gram-positive bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Zhizhi Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Lei Wang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Dongxia He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qi Liu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - A-Mei Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
- School of Medicine, Kunming University of Science and Technology, Kunming 650504, China
| |
Collapse
|
8
|
Khalifeh-Kandy AS, Nayeri FD, Ahmadabadi M. Production of functional recombinant roseltide rT1 antimicrobial peptide in tobacco plants. J Biotechnol 2024; 381:49-56. [PMID: 38181983 DOI: 10.1016/j.jbiotec.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Plant-derived peptides represent a promising group of natural compounds with broad industrial and pharmaceutical applications. Low-efficiency production level is the major obstacle to the commercial production of such bioactive peptides. Today, recombinant techniques have been developed for fast and cost-effective production of high-quality peptides for various applications in the chemical and food industries. The roseltide rT1 is a plant peptide with different antimicrobial properties and therapeutic applications in the prevention and treatment of inflammatory lung diseases by inhibiting human neutrophil elastases. Here, we report the expression of functional recombinant roseltide rT1 peptide in tobacco plants. Transgenic plants were generated by the Agrobacterium-mediated transformation method followed by molecular analysis of transgenic plants to demonstrate successful integration and expression of recombinant rT1 peptide. Protein extracts of transgenic plants expressing a single-copy rT1 gene showed efficient antimicrobial properties as verified by growth inhibition of different bacterial strains. Our results illustrate that plant-derived recombinant rT1 peptide is a promising alternative for rapid and cost-effective production of this important antimicrobial peptide for application in therapeutic and food industries.
Collapse
Affiliation(s)
- Amin Sahandi Khalifeh-Kandy
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, 35 km Tabriz-Maraqeh Road, Tabriz, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, 35 km Tabriz-Maraqeh Road, Tabriz, Iran.
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran.
| |
Collapse
|
9
|
Islam MM, Asif F, Zaman SU, Arnab MKH, Rahman MM, Hasan M. Effect of charge on the antimicrobial activity of alpha-helical amphibian antimicrobial peptide. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100182. [PMID: 36926259 PMCID: PMC10011193 DOI: 10.1016/j.crmicr.2023.100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Antibiotic resistance is a severe threat to the world's public health, which has increased the need to discover novel antibacterial molecules. In this context, an emerging class of naturally occurring short peptide molecules called antimicrobial peptides (AMPs) has been considered potent antibacterial agents. Amphibians are one of the significant sources of AMPs, which have been extensively studied for the last few decades. Most amphibian AMPs are cationic, and several of these cationic AMPs adopt a well-defined alpha-helical structure in the presence of bacterial membranes. These cationic alpha-helical amphibian AMPs (CαAMPs) can selectively and preferentially bind with the negatively charged surfaces of Gram-positive and Gram-negative bacteria through electrostatic interaction, considered the main reason for their antibacterial activities. Here, we categorized these CαAMPs according to their charge, and to calculate the charge density; we divided the charge of each peptide by its corresponding length. To investigate the effect of charge among these categories, charge or charge density under each charge category was plotted against their corresponding minimum inhibitory concentration (MIC). Moreover, the effect of charge modification of some CαAMPs under specific charge categories in the context of MIC and hemolysis was also discussed. The information in this review will help us understand the antibacterial activity of accessible CαAMPs depending on each charge category across species. Additionally, this study suggests that designing novel functional antibacterial agents requires charge modification optimally.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Fahim Asif
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Sabbir Uz Zaman
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | - Moynul Hasan
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| |
Collapse
|
10
|
Mba IE, Nweze EI. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:445-463. [PMID: 36568838 PMCID: PMC9765339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial resistance to antibiotics is an ancient and dynamic issue that has brought a situation reminiscent of the pre-antibiotic era to the limelight. Currently, antibiotic resistance and the associated infections are widespread and pose significant global health and economic burden. Thus, the misuse of antibiotics, which has increased resistance, has necessitated the search for alternative therapeutic agents for combating resistant pathogens. Antimicrobial peptides (AMPs) hold promise as a viable therapeutic approach against drug-resistant pathogens. AMPs are oligopeptides with low molecular weight. They have broad-spectrum antimicrobial activities against pathogenic microorganisms. AMPs are nonspecific and target components of microbes that facilitate immune response by acting as the first-line defense mechanisms against invading pathogenic microbes. The diversity and potency of AMPs make them good candidates for alternative use. They could be used alone or in combination with several other biomaterials for improved therapeutic activity. They can also be employed in vaccine production targeting drug-resistant pathogens. This review covers the opportunities and advances in AMP discovery and development targeting antimicrobial resistance (AMR) bacteria. Briefly, it presents an overview of the global burden of the antimicrobial resistance crisis, portraying the global magnitude, challenges, and consequences. After that, it critically and comprehensively evaluates the potential roles of AMPs in addressing the AMR crisis, highlighting the major potentials and prospects.
Collapse
Affiliation(s)
| | - Emeka Innocent Nweze
- To whom all correspondence should be addressed:
Prof. Emeka Nweze, MSc, PhD, MPH, Department of Microbiology, University of
Nigeria, Nsukka, Nigeria; ; ORCID:
https://www.orcid.org/0000-0003-4432-0885
| |
Collapse
|
11
|
Multiple Mechanistic Action of Brevinin-1FL Peptide against Oxidative Stress Effects in an Acute Inflammatory Model of Carrageenan-Induced Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2615178. [PMID: 36105482 PMCID: PMC9467757 DOI: 10.1155/2022/2615178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Amphibian skin is acknowledged to contain an antioxidant system composed of various gene-encoded antioxidant peptides, which exert significant effects on host defense. Nevertheless, recognition of such peptides is in its infancy so far. Here, we reported the antioxidant properties and underlying mechanism of a new antioxidant peptide, brevinin-1FL, identified from Fejervarya limnocharis frog skin. The cDNA sequence encoding brevinin-1FL was successfully cloned from the total cDNA of F. limnocharis and showed to contain 222 bp. The deduced mature peptide sequence of brevinin-1FL was FWERCSRWLLN. Functional analysis revealed that brevinin-1FL could concentration-dependently scavenge ABTS+, DPPH, NO, and hydroxyl radicals and alleviate iron oxidation. Besides, brevinin-1FL was found to show neuroprotective activity by reducing contents of MDA and ROS plus mitochondrial membrane potential, increasing endogenous antioxidant enzyme activity, and suppressing H2O2-induced death, apoptosis, and cycle arrest in PC12 cells which were associated with its regulation of AKT/MAPK/NF-κB signal pathways. Moreover, brevinin-1FL relieved paw edema, decreased the levels of TNF-α, IL-1β, IL-6, MPO, and malondialdehyde (MDA), and restored catalase (CAT) and superoxide dismutase (SOD) activity plus glutathione (GSH) contents in the mouse injected by carrageenan. Together, these findings indicate that brevinin-1FL as an antioxidant has potent therapeutic potential for the diseases induced by oxidative damage. Meanwhile, this study will help us further comprehend the biological functions of amphibian skin and the mechanism by which antioxidants protect cells from oxidative stress.
Collapse
|
12
|
Targeted Modification and Structure-Activity Study of GL-29, an Analogue of the Antimicrobial Peptide Palustrin-2ISb. Antibiotics (Basel) 2022; 11:antibiotics11081048. [PMID: 36009917 PMCID: PMC9405102 DOI: 10.3390/antibiotics11081048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are considered as promising antimicrobial agents due to their potent bioactivity. Palustrin-2 peptides were previously found to exhibit broad-spectrum antimicrobial activity with low haemolytic activity. Therefore, GL-29 was used as a template for further modification and study. Firstly, the truncated analogue, GL-22, was designed to examine the function of the ‘Rana box’, which was confirmed to have no impact on antimicrobial activity. The results of antimicrobial activity assessment against seven microorganisms demonstrated GL-22 to have a broad-spectrum antimicrobial activity, but weak potency against Candida albicans (C. albicans). These data were similar to those of GL-29, but GL-22 showed much lower haemolysis and lower cytotoxicity against HaCaT cells. Moreover, GL-22 exhibited potent in vivo activity at 4 × MIC against Staphylococcus aureus (S. aureus)-infected larvae. Several short analogues, from the C-terminus and N-terminus of GL-22, were modified to identify the shortest functional motif. However, the results demonstrated that the shorter peptides did not exhibit potent antimicrobial activity, and the factors that affect the bioactive potency of these short analogues need to be further studied.
Collapse
|
13
|
Kara Ş, Kürekci C, Akcan M. Design and modification of frog skin peptide brevinin-1GHa with enhanced antimicrobial activity on Gram-positive bacterial strains. Amino Acids 2022; 54:1327-1336. [DOI: 10.1007/s00726-022-03189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
|
14
|
Chen J, Zhang J, Zhu L, Qian C, Tian H, Zhao Z, Jin L, Yang D. Antibacterial Activity of the Essential Oil From Litsea cubeba Against Cutibacterium acnes and the Investigations of Its Potential Mechanism by Gas Chromatography-Mass Spectrometry Metabolomics. Front Microbiol 2022; 13:823845. [PMID: 35308342 PMCID: PMC8924494 DOI: 10.3389/fmicb.2022.823845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Cutibacterium acnes (C. acnes) is an anaerobic Gram-positive bacterium generally considered as a human skin commensal, but is also involved in different infections, such as acne and surgical infections. Although there are a variety of treatments, the side effects and the problem of bacterial drug resistance still limit their clinical usage. In this study, we found that essential oil (EO) distilled from fresh mature Litsea cubeba possessed promising antibacterial activity against C. acnes. In order to elucidate its potential mechanism, bacteriostatic activity test, Live/Dead kit assay, scanning electron microscope (SEM), transmission electron microscope (TEM), and metabolomics were employed. In addition, the content of adenosine triphosphate (ATP) in bacterium and the activities of key enzymes involved in critical metabolic pathways were detected using a variety of biochemical assays. The results showed that EO exhibited significant antibacterial activity against C. acnes at a minimum inhibitory concentration (MIC) of 400 μg/mL and a minimum bactericidal concentration (MBC) of 800 μg/mL, and EO could destroy C. acnes morphology and inhibit its growth. Moreover, results from our study showed that EO had a significant effect on the C. acnes normal metabolism. In total, 86 metabolites were altered, and 34 metabolic pathways related to the carbohydrate metabolism, energy metabolism, amino acid metabolism, as well as cell wall and cell membrane synthesis were perturbed after EO administration. The synthesis of ATP in bacterial cells was also severely inhibited, and the activities of key enzymes of the glycolysis and Wood-Werkman cycle were significantly affected (Pyruvate Carboxylase, Malate Dehydrogenase and Pyruvate kinase activities were decreased, and Hexokinase was increased). Taken together, these results illustrated that the bacteriostatic effect of EO against C. acnes by breaking the bacterial cell morphology and perturbing cell metabolism, including inhibition of key enzyme activity and ATP synthesis. The results from our study may shed new light on the discovery of novel drugs with more robust efficacy.
Collapse
Affiliation(s)
- Jing Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Longping Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Chunguo Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Hongru Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Su B, Zhang L, Li Y, Zhou L, Yang Z, Wang Z, Zhang J. Chitosan utilized for bacterial preparation for scanning electron microscopy. Microsc Res Tech 2021; 85:1258-1266. [PMID: 34851006 DOI: 10.1002/jemt.23992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Bacterial sample preparation is crucial for its observation by scanning electron microscopy (SEM). However, the current polylysine (PLL) method leads to bacterial morphological changes. To overcome this problem, we employed chitosan (CS) to coat coverslips to prepare bacteria for SEM and compared it with the PLL method. Coverslips coated with 0.025% (w/v) CS showed satisfactory bacterial binding ability. Within 30 min of binding time, the number of bacteria on CS-coated and PLL-coated coverslips exhibited no differences. Four bacteria strains were employed to compare the differences in SEM images between the two methods. Most of the bacteria showed irregular surface or sticky substances after settling on PLL-coated coverslips, while bacteria with clear surface texture were observed on CS-coated coverslips. Transmission electron microscopy (TEM) images showed deformed bacterial envelope on PLL-coated coverslips; meanwhile, similar intact envelope was observed from the bacteria on CS-coated coverslips and the bacteria without any treatment. The TEM results verified the morphological differences of SEM between the two methods. Except for morphology, the length of the rod-shaped bacteria was longer on CS-coated coverslips than that on PLL-coated coverslips, less shrinkage of the sample was observed, and CS could preserve the length of the rod-shaped bacteria better than PLL in its preparation for SEM. It is demonstrated that the low-cost CS could be utilized in bacterial preparation for SEM to acquire preferable images. Bacterial suspension with optical density at 600 nm of about 0.5, deposited on 0.025% CS-coated coverslips for 30 min, and followed by routine fixation, dehydration, and drying are optimal parameters.
Collapse
Affiliation(s)
- Bo Su
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhou
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Yang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Lin Y, Lin T, Cheng N, Wu S, Huang J, Chen X, Chen T, Zhou M, Wang L, Shaw C. Evaluation of antimicrobial and anticancer activities of three peptides identified from the skin secretion of Hylarana latouchii. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1469-1483. [PMID: 34508563 DOI: 10.1093/abbs/gmab126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The skins of frogs of the family Ranidae are particularly rich sources of biologically active peptides, among which antimicrobial peptides (AMPs) constitute the major portion. Some of these have attracted the interest of researchers because they possess both antimicrobial and anticancer activities. In this study, with 'shotgun' cloning and MS/MS fragmentation, three AMPs, homologues of family brevinin-1 (brevinin-1HL), and temporin (temporin-HLa and temporin-HLb), were discovered from the skin secretion of the broad-folded frog, Hylarana latouchii. They exhibited various degrees of antimicrobial and antibiofilm activities against test microorganisms and hemolysis on horse erythrocytes. It was found that they could induce bacteria death through disrupting cell membranes and binding to bacterial DNA. In addition, they also showed different potencies towards human cancer cell lines. The secondary structure and physicochemical properties of each peptide were investigated to preliminarily reveal their structure-activity relationships. Circular dichroism spectrometry showed that they all adopted a canonical α-helical conformation in membrane-mimetic solvents. Notably, the prepropeptide of brevinin-1HL from H. latouchii was highly identical to that of brevinin-1GHd from Hylarana guentheri, indicating a close relationship between these two species. Accordingly, this study provides candidates for the design of novel anti-infective and antineoplastic agents to fight multidrug-resistant bacteria and malignant tumors and also offers additional clues for the taxonomy of ranid frogs.
Collapse
Affiliation(s)
- Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiancai Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| |
Collapse
|
17
|
Fischer T, Riedl R. Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins. Drug Discov Today 2021; 27:567-575. [PMID: 34678490 DOI: 10.1016/j.drudis.2021.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Given the vast number of venomous and poisonous animals, it is surprising that only relatively few animal-derived toxins have been explored and made their way into marketed drugs or are being investigated in ongoing clinical trials. In this review, we highlight marketed drugs deriving from animal toxins as well as ongoing clinical trials and preclinical investigations in the field. We emphasize that more attention should be paid to the rich supply of candidates that nature provides as valuable starting points for addressing serious unmet medical needs.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
18
|
Modification Strategy of D-leucine Residue Addition on a Novel Peptide from Odorrana schmackeri, with Enhanced Bioactivity and In Vivo Efficacy. Toxins (Basel) 2021; 13:toxins13090611. [PMID: 34564615 PMCID: PMC8473181 DOI: 10.3390/toxins13090611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Brevinins are a well-characterised, frog-skin-derived, antimicrobial peptide (AMP) family, but their applications are limited by high cytotoxicity. In this study, a wild-type des-Leu2 brevinin peptide, named brevinin-1OS (B1OS), was identified from Odorrana schmackeri. To explore the significant role of the leucine residue at the second position, two variants, B1OS-L and B1OS-D-L, were designed by adding L-leucine and D-leucine residues at this site, respectively. The antibacterial and anticancer activities of B1OS-L and B1OS-D-L were around ten times stronger than the parent peptide. The activity of B1OS against the growth of Gram-positive bacteria was markedly enhanced after modification. Moreover, the leucine-modified products exerted in vivo therapeutic potential in an methicillin-resistant Staphylococcus aureus (MRSA)-infected waxworm model. Notably, the single substitution of D-leucine significantly increased the killing speed on lung cancer cells, where no viable H838 cells survived after 2 h of treatment with B1OS-D-L at 10 μM with low cytotoxicity on normal cells. Overall, our study suggested that the conserved leucine residue at the second position from the N-terminus is vital for optimising the dual antibacterial and anticancer activities of B1OS and proposed B1OS-D-L as an appealing therapeutic candidate for development.
Collapse
|
19
|
Drug Development Using Natural Toxins. Toxins (Basel) 2021; 13:toxins13060414. [PMID: 34207953 PMCID: PMC8230678 DOI: 10.3390/toxins13060414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
|
20
|
Synergistic Effect of Frog Skin Antimicrobial Peptides in Combination with Antibiotics Against Multi host Gram-Negative Pathogens. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10189-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Liu L, Zhao L, Liu L, Yue S, Wang J, Cao Z. Influence of Different Aromatic Hydrophobic Residues on the Antimicrobial Activity and Membrane Selectivity of BRBR-NH 2 Tetrapeptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15331-15342. [PMID: 33295774 DOI: 10.1021/acs.langmuir.0c02777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ultrashort linear antimicrobial tetrapeptide BRBR-NH2 with an unnatural residue biphenylalanine (B) has potent and rapid antimethicillin-resistant Staphylococcus aureus (MRSA) activity but lacks hemolytic activity. The anti-MRSA activity of BRBR-NH2 is 8-fold more potent than that of WRWR-NH2 and 16-fold more potent than that of FRFR-NH2. However, how to influence their antimicrobial activities and mechanisms through the substitution of different aromatic hydrophobic residues is still unclear. In this work, to study the effects of varying hydrophobic interactions and membrane selectivities of BRBR-NH2, we performed multiple long-time (1000 ns) molecular dynamics (MD) simulations to investigate the interactions of a red blood cell (RBC) membrane and a Gram-positive bacterial cell membrane with three different tetrapeptides (BRBR-NH2, WRWR-NH2, and FRFR-NH2) under different ratios of peptides and lipids and also explored the changes in the membrane and structural characteristics of peptides. The binding energy results show that BRBR-NH2 interacts weakly with the RBC membrane, while not all BRBR-NH2 can be adsorbed to the RBC membrane surface. The MD simulation results produced significant local membrane thinning of multiBRBR-NH2 peptides in the Gram-positive bacterial cell membrane. An in-depth analysis of structural features and peptide-membrane interactions suggests that the aggregation of BRBR-NH2 on the membrane surface plays a crucial role in the destruction of the cell membrane. Taken together with the observed local membrane thinning, the in-depth analysis demonstrated that the interactions between the lipid bilayer and the BRBR-NH2 aggregation surface result in a local disturbance of the membrane structure. It can be concluded that the high anti-MRSA activity of BRBR-NH2 is attributed to the aggregation of BRBR-NH2 on the membrane surface. On the other hand, WRWR-NH2 and FRFR-NH2 peptides tend to bind with the membrane surface in a monomeric form and cover the membrane surface in a carpet-like manner. Therefore, these results provide an advanced microscopic understanding of how hydrophobic interactions or hydrophobic residues affect the antimicrobial activity and mechanism of antimicrobial peptides (AMPs).
Collapse
Affiliation(s)
- Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Liling Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Lixia Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Shizhong Yue
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|