1
|
Haida M, Khalloufi FE, Essadki Y, Alexandrino DAM, Mugani R, Hejjaj A, Campos A, Vasconcelos V, Carvalho MF, Díez-Quijada L, Cameán AM, Oudra B. Microcystin-degrading bacteria reduce bioaccumulation in Fragaria vulgaris and enhance fruit yield and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54502-54524. [PMID: 39196325 DOI: 10.1007/s11356-024-34568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In Morocco, red fruit production has thrived, primarily utilizing hydroponic methods to control crops, increase fruit yield and quality, and avoid soil-related problems. However, the irrigation of these expansive hydroponic farms relies heavily on water sourced from dams, many of which are contaminated with Microcystins (MCs). To address this contamination issue, ongoing research is focused on discovering effective and cost-efficient biological solutions for eliminating MCs. In this study, we isolate and identify bacterial strains capable of degrading MCs, evaluate the rate of degradation, and investigate how soil inoculated with these bacteria affects the accumulation of MCs in plant tissue. The partial 16S rRNA analyses of three bacterial sequences were conducted, identifying them through NCBI as follows: Ensifer sp. (B1) isolated from soil, Shinella sp. (B2) from a cyanobacterial bloom, and Stutzerimonas sp. (B3) from water. These bacteria exhibited the ability to degrade MCs, with approximately 34.75%, 73.75%, and 30.1% of the initial concentration (20 µg/L) being removed after a 6-day period for B1, B2, and B3, respectively. Moreover, strawberry plants were cultivated hydroponically in a greenhouse for a duration of 90 days. These plants were subjected to extracts of cyanobacteria containing 10 and 20 µg/L of Microcystins (MC), as well as water from an artificial lake contaminated with MC, both with and without the presence of isolated bacterial strains. Among these strains, Shinella sp. exhibited the highest efficacy in mitigating MC accumulation. Specifically, it resulted in a reduction of approximately 1.159 µg of MC per kilogram of root dry weight, leading to complete elimination in the leaves and fruits. The findings also indicated that the inoculation of perlite with the three MC-degrading bacterial strains significantly enhanced growth, photosynthetic pigments, yield, biochemical constituents, and quality attributes of strawberries (p ≤ 0.05). These promising outcomes suggest the potential of this approach for addressing the adverse impacts of crops irrigated with MC-contaminated water in future agricultural practices.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Diogo A M Alexandrino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- Department of Environmental Health, School of Health, P. Porto, Porto, Portugal
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- National Center for Studies and Research On Water and Energy, Cadi Ayyad University, P.O Box: 511, 40000, Marrakech, Morocco
| | - Abdessamad Hejjaj
- National Center for Studies and Research On Water and Energy, Cadi Ayyad University, P.O Box: 511, 40000, Marrakech, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal.
- Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Maria F Carvalho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor Gacia Gonzalez 2, 41012, Seville, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor Gacia Gonzalez 2, 41012, Seville, Spain
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
2
|
Mohamed ZA, Mostafa Y, Alamri S, Hashem M. Accumulation of microcystin toxin in irrigation water and alfalfa (Medicago sativa) forage plant, and assessing the potential risk to animal health. CHEMOSPHERE 2024; 364:143248. [PMID: 39233291 DOI: 10.1016/j.chemosphere.2024.143248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Microcystin (MC) toxin produced by cyanobacteria has become a significant concern for societies worldwide. The risk of MC in drinking water has been assessed to human health. Nonetheless, its risk to animal health has not been thoroughly evaluated. This study investigated MCs in irrigation water and alfalfa plant from nearby farmlands. Both irrigation water and alfalfa shoots contained greater MC concentrations (1.8-17.4 μg L-1 and 0.053-0.128 μg g-1) during summer than winter (2.4 μg L-1 and 0.017 μg g-1). These MC concentrations showed a correlation with the predominance of cyanobacteria in the sites, triggering the potential risk of these microorganisms in irrigation waters. Accordingly, there would be a high risk (risk quotient, RQ > 1) during summer and a moderate risk (0.1
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Yasser Mostafa
- King Khalid University, College of Science, Department of Biology, Abha, P.O. Box 9004, Saudi Arabia
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, P.O. Box 9004, Saudi Arabia
| | - Mohamed Hashem
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut 71516, Egypt
| |
Collapse
|
3
|
Mohamed ZA, Fathi AA, Mostafa Y, Alamri S, Hashem M, Alrumman S, Basha OR. Microcystin levels in irrigation water and field-vegetable plants, and food safety risk assessment: A case study from Egypt. Toxicon 2024; 247:107846. [PMID: 38964620 DOI: 10.1016/j.toxicon.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Microcystin (MC), a hepatotoxin that is harmful to human health, has frequently increased in freshwaters worldwide due to the increase in toxic cyanobacterial blooms. Despite many studies reported the human exposure to MC through drinking water, the potential transfer of this toxin to human via consumption of vegetables grown on farmlands that are naturally irrigated with contaminated water has not been largely investigated. Therefore, this study investigates the presence of MC in irrigation water and its potential accumulation in commonly consumed vegetables from Egyptian farmlands. The results of toxin analysis revealed that all irrigation water sites contained high MC concentrations (1.3-93.7 μg L-1) along the study period, in association with the abundance of dominant cyanobacteria in these sites. Meanwhile, MCs were detected in most vegetable plants surveyed, with highest levels in potato tubers (1100 μg kg-1 fresh weight, FW) followed by spinach (180 μg kg-1 FW), onion (170 μg g-1 FW), Swiss chard (160 μg kg-1 FW) and fava bean (46 μg kg-1 FW). These MC concentrations in vegetables led to estimated daily intake (EDI) values (0.08-1.13 μg kg bw-1 d-1 for adults and 0.11-1.5 μg kg bw-1 d-1 for children), through food consumption, exceeding the WHO recommended TDI (0.04 μg kg bw-1 d-1) for this toxin. As eutrophic water is widely used for irrigation in many parts of the world, our study suggests that cyanotoxins in irrigation waters and agricultural plants should be regularly monitored to safeguard the general public from inadvertent exposure to harmful toxins via food consumption.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Adel A Fathi
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia, Egypt
| | - Yasser Mostafa
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Sulaiman Alrumman
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Omnia R Basha
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Mandal AK, Pal T, Kumar S, Mukherji S, Mukherji S. A portable EIS-based biosensor for the detection of microcystin-LR residues in environmental water bodies and simulated body fluids. Analyst 2024; 149:2170-2179. [PMID: 38445310 DOI: 10.1039/d3an01029e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Due to the eutrophication of water bodies around the world, there is a drastic increase in harmful cyanobacterial blooms leading to contamination of water bodies with cyanotoxins. Chronic exposure to cyanotoxins such as microcystin leads to oxidative stress, inflammation, and liver damage, and potentially to liver cancer. We developed a novel and easy-to-use electrochemical impedance spectroscopy-based immunosensor by fabricating stencil-printed conductive carbon-based interdigitated microelectrodes and immobilising them with cysteamine-capped gold nanoparticles embedded in polyaniline. It has been also coupled with a custom handheld device enabling regular on-site assessment, especially in resource-constrained situations encountered in developing countries. The sensor is able to detect microcystin-LR up to 0.1 μg L-1, having a linear response between 0.1 and 100 μg L-1 in lake and river water and in serum and urine samples. In addition to being inexpensive, easy to fabricate, and sensitive, it also has very good selectivity.
Collapse
Affiliation(s)
- Atindra Kanti Mandal
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Tathagata Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - Satish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - Suparna Mukherji
- Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
5
|
Pindihama G, Gitari M, Madala N. Effect of linear alkylbenzene sulfonate on the uptake of microcystins by Brassica oleracea and Solanum tuberosum. F1000Res 2024; 11:1166. [PMID: 38510265 PMCID: PMC10951562 DOI: 10.12688/f1000research.125540.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 03/22/2024] Open
Abstract
Background Globally, hypereutrophic conditions in major water reservoirs used for irrigation purposes, promote the co-existence of cyanotoxins and other pollutants such as linear alkylbenzene sulfonate (LAS). LAS is known to alter the permeability of membranes and promote the uptake of other pollutants by plants. In light of the potential human health risks and prevailing hypereutrophic conditions in some catchments in South Africa, we investigated the combined effects of LAS and microcystins (MCs) on food plants when cyanobacteria infested water is used to irrigate terrestrial crops. Methods To understand the potential risks, pot-culture experiments were conducted to assess the effect of LAS on the accumulation of MCs in Brassica oleracea (cabbage) and Solanum tuberosum (potato) plants. The plants were watered with dam water containing 3.48 mg L -1 of the LAS (sodium dodecyl sulfate) and MCs (MC-LR: 10.47 ± 3.879; 6.158 ± 4.127 for MC-RR and 8.160 ± 2.544 for MC-YR μg L -1) for 20 days. Results The presence of LAS, at environmentally relevant concentrations in the irrigation water, did not enhance the uptake of MCs in the two plants, as demonstrated by statistically insignificant differences in the means of the treatments (with and without LAS). In addition, the presence of LAS, high pH, electrical conductivity (EC), and cyanotoxins in the water did not affect the total chlorophyll or the well-being of the plants. However, in some cases the levels of MCs bioaccumulated by the two plants exceeded the WHO recommended tolerable daily intake (TDI). Conclusions These findings imply that the tested levels of LAS and MCs did not have any synergic effects on the two plant species, but irrigating food crops with such water still poses a human health risk.
Collapse
Affiliation(s)
- Glynn Pindihama
- Department of Geography & Environmental Sciences, University of Venda, Thohoyandou, Limpopo Province, 0950, South Africa
| | - Mugera Gitari
- Department of Geography & Environmental Sciences, University of Venda, Thohoyandou, Limpopo Province, 0950, South Africa
- Department of Chemical Sciences and Technology, Technical University of Kenya., Nairobi, Kenya, 00200, Kenya
| | - Ntakadzeni Madala
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, Limpopo Province, 0950, South Africa
| |
Collapse
|
6
|
Qin C, Xiang L, Wang YZ, Yu PF, Meng C, Li YW, Zhao HM, Hu X, Gao Y, Mo CH. Binding interaction of environmental DNA with typical emerging perfluoroalkyl acids and its impact on bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167392. [PMID: 37758138 DOI: 10.1016/j.scitotenv.2023.167392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
As the replacement compounds of perfluoroalkyl acids (PFAAs), emerging PFAAs generally exhibit equal or more hazardous toxicity than legacy PFAAs. Numerous DNA as environmental organic matters coexists with emerging PFAAs, but their interactions and the resulting interaction impacts on the bioavailability of emerging PFAAs remain insufficiently understood. Here, we studied the binding strength and mechanism between DNA and emerging PFAAs (perfluorobutyric acid, perfluorobutylsulfonic acid, and hexafluoropropylene oxide dimer acid) using perfluorooctanoic acid as the control, and further investigated the impacts of DNA binding on the bioavailability of the emerging PFAAs. Isothermal titration calorimetry and quantum chemical calculation found that the emerging PFAAs could bind with DNA bases (main thymine) by van der Waals force and halogen-bond, showing the binding affinities in the range of 7.87 × 104 to L/mol to 6.54 × 106 L/mol. The PFAAs-DNA binding significantly decreased the bioavailability of the PFAAs in both seedlings and plants of pakchoi (Brassica chinensis L.), with little differences in bioavailability change extent among PFAAs. The findings highlight the universality and similarity of the DNA binding effects on PFAAs bioavailability, which can be the natural detoxification mechanism for response to the PFAAs pollution.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ze Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Can Meng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Haida M, El Khalloufi F, Tamegart L, Mugani R, Essadki Y, Redouane EM, Azevedo J, Araújo MJ, Campos A, Vasconcelos V, Gamrani H, Oudra B. Tracing the fate of microcystins from irrigation water to food chains: Studies with Fragaria vulgaris and Meriones shawi. Toxicon 2023; 236:107345. [PMID: 37963511 DOI: 10.1016/j.toxicon.2023.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Microcystins (MCs) are cyanobacterial toxins that can negatively impact human and animal health. This study investigated the bioaccumulation, transfer, depuration, and health risks of MCs in strawberry plants (Fragaria vulgaris) and Meriones shawi animals. The plants were irrigated with 1, 5, 10, and 20 μg/L MCs for 60 days (bioaccumulation phase) and then with clean water for 30 days (depuration phase). The harvested plants (roots and leaves) were then prepared in an aliquot form and used as feed for Meriones shawi. Liquid chromatography-mass spectrometry (LC/MS/MS) was used to measure MC concentrations in plant and animal tissues. The bioaccumulation of MCs was found to be highest in the roots, followed by leaves, fruits, liver, stomach, and fecal matter. The bioaccumulation factor (BAF) was highest in perlite (8.48), followed by roots (5.01), leaves (1.55), stomach (0.87), and fecal matter (1.18), indicating that the parts with high bioaccumulation factor had high translocation of MCs. The transfer of MCs to animal organs was low, and the daily toxin intake of adult consumers of strawberry fruit irrigated with 1, 5, 10, and 20 μg/L MC did not exceed the WHO-recommended limit of 0.04 μg MC-LR/Kg of bw/day. However, fruits from plants irrigated with 10 and 20 μg/L may pose a moderate health risk to children (25 Kg bw), and Meriones' consumption of leaves may pose a significant health risk. After the depuration phase, MC concentration in perlite, roots, leaves, and fruits decreased, indicating that depuration reduced the danger of MC transmission and bioaccumulation. The study also found that glutathione reductase and glutathione S-transferase activity were essential in the depuration of MCs in the tested plants. The findings suggest that legislation regulating the quality of irrigation water in terms of MC concentrations is necessary to prevent detrimental consequences to crops and human exposure.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Lahcen Tamegart
- Department of Biology, Faculty of Science, AbdelmalekEssaadi University, Tetouan, Morocco; Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Mário Jorge Araújo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
8
|
Wang Z, Zhang S, Liu Z, Chang Z, Hu H. Gut Bacteria Promote Phosphine Susceptibility of Tribolium castaneum by Aggravating Oxidative Stress and Fitness Costs. INSECTS 2023; 14:815. [PMID: 37887827 PMCID: PMC10607109 DOI: 10.3390/insects14100815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Knowledge about resistance mechanisms can provide ideas for pesticide resistance management. Although several studies have unveiled the positive or negative impacts of gut microbes on host pesticide resistance, minimal research is available regarding the association between gut microbes and host phosphine resistance. To explore the influence of gut bacteria on host phosphine susceptibility and its molecular basis, mortality, fitness, redox responses, and immune responses of adult Tribolium castaneum were determined when it was challenged by phosphine exposure and/or gut bacteria inoculation. Five cultivable gut bacteria were excised from a population of phosphine-resistant T. castaneum. Among them, only Enterococcus sp. inoculation significantly promoted host susceptibility to phosphine, while inoculation of any other gut bacteria had no significant effect on host phosphine susceptibility. Furthermore, when T. castaneum was exposed to phosphine, Enterococcus sp. inoculation decreased the female fecundity, promoted host oxidative stress, and suppressed the expression and activity of host superoxide dismutase, catalase, and peroxidase. In the absence of phosphine, Enterococcus sp. inoculation also elicited overactive immune responses in T. castaneum, including the immune deficiency and Toll signaling pathways and the dual oxidase-reactive oxygen species system. These results indicate that Enterococcus sp. likely promotes host phosphine susceptibility by aggravating oxidative stress and fitness costs.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Z.L.); (Z.C.); (H.H.)
| | | | | | | | | |
Collapse
|
9
|
Redouane EM, Tazart Z, Lahrouni M, Mugani R, Elgadi S, Zine H, Zerrifi SEA, Haida M, Martins JC, Campos A, Oufdou K, Vasconcelos V, Oudra B. Health risk assessment of lake water contaminated with microcystins for fruit crop irrigation and farm animal drinking. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80234-80244. [PMID: 37294489 PMCID: PMC10344998 DOI: 10.1007/s11356-023-27914-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
The health risks linked to the consumption of microcystin-accumulating crops have been increasing worldwide in toxic cyanobloom-occurring regions. The bioaccumulation of microcystins (MCs) in agricultural produce at environmentally realistic concentrations is poorly investigated. In this field study, we assessed the health risks of MCs in raw water used for irrigating fruit crops (bioaccumulation) and watering farm animals in the Lalla Takerkoust agricultural region (Marrakesh, Morocco). Thus, MCs were extracted from water and fruit samples and quantified by enzyme-linked immunosorbent assay in order to calculate the health risk indicators. MCs posed a high health-risk level to poultry and horses, with estimated daily intakes (EDI) being 14- and 19-fold higher than the recommended limits (3.1 and 2.3 μg MC-LR L-1), respectively. Furthermore, pomegranate posed the same level of risk, with EDI being 22- and 53-fold higher than the limit dose (0.04 μg MC-LR kg-1) for adults and children, respectively. There was an urgent need for guidelines regarding water use and management in MC-polluted areas, besides the setup of nature-based tools for toxin removal from raw water used in farming practices. Moreover, MCs could contaminate the human food chain, which implies further investigations of their potential accumulation in livestock- and poultry-based food.
Collapse
Affiliation(s)
- El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Zakaria Tazart
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Majida Lahrouni
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Sara Elgadi
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
- Laboratory of Agro. Food Technology and Quality, Regional Center for Agronomic Research of Marrakech, National Institute of Agronomic Research (INRA), 40000, Marrakech, Morocco
| | - Hamza Zine
- Geology and Sustainable Mining Institute (GSMI), Mohammad VI Polytechnic University, 43150, Ben Guerir, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
- Higher Institute of Nurses Professions and Health Techniques of Guelmim, 81000, Guelmim, Morocco
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - José Carlos Martins
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| |
Collapse
|
10
|
Towards a Better Quantification of Cyanotoxins in Fruits and Vegetables: Validation and Application of an UHPLC-MS/MS-Based Method on Belgian Products. SEPARATIONS 2022. [DOI: 10.3390/separations9100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vegetables and fruits can potentially accumulate cyanotoxins after water contaminated with cyanobacteria is used for irrigation. We developed and validated an analytical method to quantify eight microcystin congeners (MCs) and nodularin (NOD) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) in three different matrices. Strawberries, carrots and lettuce are selected as model matrices to represent the fruits/berries, leafy and root vegetables, sequentially. The validation of a UHPLC-MS/MS method in the strawberry matrix is novel. Matrix effects are observed in all three matrices. Our methodology uses matrix-matched calibration curves to compensate for the matrix effect. The implementation of our method on 103 samples, containing nine different sorts of fruits and vegetables from the Belgian market, showed no presence of MCs or NOD. However, the recoveries of our quality controls showed the effectiveness of our method, illustrating that the use of this method in future research or monitoring as well as in official food controls in fruit and vegetable matrices is valid.
Collapse
|
11
|
Hill D, Lang J, McCord J, Strynar M, Rosal C, Schmid J, Le TT, Chernoff N. Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins (Basel) 2022; 14:toxins14100705. [PMID: 36287973 PMCID: PMC9611723 DOI: 10.3390/toxins14100705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Microcystins (MCs) are a large group of heptapeptide cyanobacterial toxins commonly produced in harmful algal blooms (HABs) and associated with adverse health effects in wildlife, livestock, pets, and humans. MC chemical standards are extracted from cyanobacteria biomass rather than produced synthetically and are used in water assessment methods and toxicological studies. MC standards are generally supplied in less than 1 mg quantities, and verification of the mass can only be accomplished by analytical chemistry methods using a certified reference of the specific MC for comparison. Analytical quantification of MCs in environmental samples and toxicology studies using accurate doses of test chemicals administered to experimental animals rely on the availability and accuracy of chemical standards. To check the accuracy and purity of available standards, seven individual microcystin-LR (MCLR) standards were purchased from separate commercial vendors and analyzed to determine the actual mass supplied and identify the presence of potential contaminants. To determine the effect of varying toxin mass in toxicological studies, each MCLR standard was administered to CD-1 mice in doses based on mass purchased, by a single 40 µg/kg intraperitoneal injection. The measured mass purchased varied from the vendor label mass by more than 35% for two of the seven MCLR standards. Contaminants, including trifluoroacetic acid (TFA), were identified in four of the seven samples. Comparative in vivo hepatotoxicity between vendor samples closely reflected the actual amount of MCLR present in each standard and demonstrated the toxicological impact of varying cyanotoxin mass.
Collapse
Affiliation(s)
- Donna Hill
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- Correspondence:
| | - Johnsie Lang
- Arcadis (United States), 4204 Technology Dr, Durham, NC 27704, USA
| | - James McCord
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark Strynar
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Judith Schmid
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
12
|
Sergi E, Orfanakis M, Dimitriadi A, Christou M, Zachopoulou A, Kourkouta C, Printzi A, Zervou SK, Makridis P, Hiskia A, Koumoundouros G. Sublethal exposure to Microcystis aeruginosa extracts during embryonic development reduces aerobic swimming capacity in juvenile zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106074. [PMID: 35030472 DOI: 10.1016/j.aquatox.2022.106074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decades, cyanobacterial harmful algal blooms (CyanoHABs) pose an intensifying ecological threat. Microcystis aeruginosa is a common CyanoHAB species in freshwater ecosystems, with severe toxic effects in a wide range of organisms. In the present paper we examined whether transient and short (48 h) exposure of fish embryos to sublethal levels of M. aeruginosa crude extract (200 mg biomass dw L-1) affects swimming performance at later life stages (end of metamorphosis, ca 12 mm TL, 22,23 days post-fertilization). Pre-exposed metamorphosing larvae presented a significant decrease in swimming performance (9.7 ± 1.6 vs 11.4 ± 1.7 TL s-1 in the control group, p < 0.01), and a significant decrease in the ventricle length-to-depth ratio (1.23 ± 0.15 vs 1.42 ± 0.15 in control fish, p < 0.05). In addition, extract-exposed fish presented significantly elevated rates of vertebral abnormalities (82 ± 13% vs 7 ± 4% in the control group), mainly consisting of the presence of extra neural and haemal processes. No significant differences between groups were detected in survival and growth rates. Results are discussed in respect to the mechanisms that might mediate the detected cyanobacterial effects. This is the first evidence of a direct link between sublethal exposure to M. aeruginosa during the embryonic period and swimming performance at later life-stages. Decreased swimming performance, altered cardiac shape, and elevated vertebral abnormalities in response to early exposure to M. aeruginosa could have significant effects on fish populations in the wild.
Collapse
Affiliation(s)
| | | | | | - Maria Christou
- Biology Department, University of Crete, Heraklion, Greece
| | | | | | - Alice Printzi
- Biology Department, University of Crete, Heraklion, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | |
Collapse
|
13
|
Role of Rhizospheric Microbiota as a Bioremediation Tool for the Protection of Soil-Plant Systems from Microcystins Phytotoxicity and Mitigating Toxin-Related Health Risk. Microorganisms 2021; 9:microorganisms9081747. [PMID: 34442826 PMCID: PMC8402104 DOI: 10.3390/microorganisms9081747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Frequent toxic cyanoblooms in eutrophic freshwaters produce various cyanotoxins such as the monocyclic heptapeptides microcystins (MCs), known as deleterious compounds to plant growth and human health. Recently, MCs are a recurrent worldwide sanitary problem in irrigation waters and farmland soils due to their transfer and accumulation in the edible tissues of vegetable produce. In such cases, studies about the persistence and removal of MCs in soil are scarce and not fully investigated. In this study, we carried out a greenhouse trial on two crop species: faba bean (Vicia faba var. Alfia 321) and common wheat (Triticum aestivum var. Achtar) that were grown in sterile (microorganism-free soil) and non-sterile (microorganism-rich soil) soils and subjected to MC-induced stress at 100 µg equivalent MC-LR L−1. The experimentation aimed to assess the prominent role of native rhizospheric microbiota in mitigating the phytotoxic impact of MCs on plant growth and reducing their accumulation in both soils and plant tissues. Moreover, we attempted to evaluate the health risk related to the consumption of MC-polluted plants for humans and cattle by determining the estimated daily intake (EDI) and health risk quotient (RQ) of MCs in these plants. Biodegradation was liable to be the main removal pathway of the toxin in the soil; and therefore, bulk soil (unplanted soil), as well as rhizospheric soil (planted soil), were used in this experiment to evaluate the accumulation of MCs in the presence and absence of microorganisms (sterile and non-sterile soils). The data obtained in this study showed that MCs had no significant effects on growth indicators of faba bean and common wheat plants in non-sterile soil as compared to the control group. In contrast, plants grown in sterile soil showed a significant decrease in growth parameters as compared to the control. These results suggest that MCs were highly bioavailable to the plants, resulting in severe growth impairments in the absence of native rhizospheric microbiota. Likewise, MCs were more accumulated in sterile soil and more bioconcentrated in root and shoot tissues of plants grown within when compared to non-sterile soil. Thereby, the EDI of MCs in plants grown in sterile soil was more beyond the tolerable daily intake recommended for both humans and cattle. The risk level was more pronounced in plants from the sterile soil than those from the non-sterile one. These findings suggest that microbial activity, eventually MC-biodegradation, is a crucial bioremediation tool to remove and prevent MCs from entering the agricultural food chain.
Collapse
|
14
|
Arman T, Clarke JD. Microcystin Toxicokinetics, Molecular Toxicology, and Pathophysiology in Preclinical Rodent Models and Humans. Toxins (Basel) 2021; 13:toxins13080537. [PMID: 34437407 PMCID: PMC8402503 DOI: 10.3390/toxins13080537] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Microcystins are ubiquitous toxins produced by photoautotrophic cyanobacteria. Human exposures to microcystins occur through the consumption of contaminated drinking water, fish and shellfish, vegetables, and algal dietary supplements and through recreational activities. Microcystin-leucine-arginine (MCLR) is the prototypical microcystin because it is reported to be the most common and toxic variant and is the only microcystin with an established tolerable daily intake of 0.04 µg/kg. Microcystin toxicokinetics is characterized by low intestinal absorption, rapid and specific distribution to the liver, moderate metabolism to glutathione and cysteinyl conjugates, and low urinary and fecal excretion. Molecular toxicology involves covalent binding to and inhibition of protein phosphatases, oxidative stress, cell death (autophagy, apoptosis, necrosis), and cytoskeleton disruption. These molecular and cellular effects are interconnected and are commonly observed together. The main target organs for microcystin toxicity are the intestine, liver, and kidney. Preclinical data indicate microcystins may also have nervous, pulmonary, cardiac, and reproductive system toxicities. Recent evidence suggests that exposure to other hepatotoxic insults could potentiate microcystin toxicity and increase the risk for chronic diseases. This review summarizes the current knowledge for microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. More research is needed to better understand human toxicokinetics and how multifactorial exposures contribute to disease pathogenesis and progression.
Collapse
|
15
|
Impacts of Microcystins on Morphological and Physiological Parameters of Agricultural Plants: A Review. PLANTS 2021; 10:plants10040639. [PMID: 33800599 PMCID: PMC8065763 DOI: 10.3390/plants10040639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes that pose a great concern in the aquatic environments related to contamination and poisoning of wild life and humans. Some species of cyanobacteria produce potent toxins such as microcystins (MCs), which are extremely aggressive to several organisms, including animals and humans. In order to protect human health and prevent human exposure to this type of organisms and toxins, regulatory limits for MCs in drinking water have been established in most countries. In this regard, the World Health Organization (WHO) proposed 1 µg MCs/L as the highest acceptable concentration in drinking water. However, regulatory limits were not defined in waters used in other applications/activities, constituting a potential threat to the environment and to human health. Indeed, water contaminated with MCs or other cyanotoxins is recurrently used in agriculture and for crop and food production. Several deleterious effects of MCs including a decrease in growth, tissue necrosis, inhibition of photosynthesis and metabolic changes have been reported in plants leading to the impairment of crop productivity and economic loss. Studies have also revealed significant accumulation of MCs in edible tissues and plant organs, which raise concerns related to food safety. This work aims to systematize and analyze the information generated by previous scientific studies, namely on the phytotoxicity and the impact of MCs especially on growth, photosynthesis and productivity of agricultural plants. Morphological and physiological parameters of agronomic interest are overviewed in detail in this work, with the aim to evaluate the putative impact of MCs under field conditions. Finally, concentration-dependent effects are highlighted, as these can assist in future guidelines for irrigation waters and establish regulatory limits for MCs.
Collapse
|
16
|
Zhang Y, Whalen JK, Sauvé S. Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115966. [PMID: 33168379 DOI: 10.1016/j.envpol.2020.115966] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Microcystins are cyanotoxins produced by many species of cyanobacteria. They are specific inhibitors of serine/threonine protein phosphatases and are phytotoxic to agricultural plants. This study used a formal meta-analysis to estimate the phytotoxicity and bioconcentration rates of agricultural plants exposed to microcystins, and the human health risk from consuming microcystin-contaminated plants. Among the 35 agricultural plants investigated, microcystins were most phytotoxic to durum wheat, corn, white mustard and garden cress. Leafy vegetables such as dill, parsley and cabbage could bioconcentrate ∼3 times more microcystins in their edible parts than other agricultural plants. Although the human health risk from ingesting microcystins could be greater for leafy vegetables than other agricultural plants, further work is needed to confirm bioconcentration of microcystins in realistic water-soil-plant environments. Still, we should avoid growing leafy vegetables, durum wheat and corn on agricultural land that is irrigated with microcystins-contaminated water and be attentive to the risk of microcystins contamination in the agricultural food supply.
Collapse
Affiliation(s)
- Yanyan Zhang
- McGill University, Department of Natural Resource Science, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, Quebec, Canada, H9X 3V9
| | - Joann K Whalen
- McGill University, Department of Natural Resource Science, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, Quebec, Canada, H9X 3V9.
| | - Sébastien Sauvé
- Université de Montréal, Department of Chemistry, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|
17
|
Sorlini S, Collivignarelli C, Carnevale Miino M, Caccamo FM, Collivignarelli MC. Kinetics of Microcystin-LR Removal in a Real Lake Water by UV/H 2O 2 Treatment and Analysis of Specific Energy Consumption. Toxins (Basel) 2020; 12:toxins12120810. [PMID: 33371280 PMCID: PMC7766062 DOI: 10.3390/toxins12120810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/27/2023] Open
Abstract
The hepatotoxin microcystin-LR (MC-LR) represents one of the most toxic cyanotoxins for human health. Considering its harmful effect, the World Health Organization recommended a limit in drinking water (DW) of 1 µg L−1. Due to the ineffectiveness of conventional treatments present in DW treatment plants against MC-LR, advanced oxidation processes (AOPs) are gaining interest due to the high redox potential of the OH• radicals. In this work UV/H2O2 was applied to a real lake water to remove MC-LR. The kinetics of the UV/H2O2 were compared with those of UV and H2O2 showing the following result: UV/H2O2 > UV > H2O2. Within the range of H2O2 tested (0–0.9 mM), the results showed that H2O2 concentration and the removal kinetics followed an increasing quadratic relation. By increasing the initial concentration of H2O2, the consumption of oxidant also increased but, in terms of MC-LR degraded for H2O2 dosed, the removal efficiency decreased. As the initial MC-LR initial concentration increased, the removal kinetics increased up to a limit concentration (80 µg L−1) in which the presence of high amounts of the toxin slowed down the process. Operating with UV fluence lower than 950 mJ cm−2, UV alone minimized the specific energy consumption required. UV/H2O2 (0.3 mM) and UV/H2O2 (0.9 mM) were the most advantageous combination when operating with UV fluence of 950–1400 mJ cm−2 and higher than 1400 mJ cm−2, respectively.
Collapse
Affiliation(s)
- Sabrina Sorlini
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy;
- Correspondence:
| | - Carlo Collivignarelli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy;
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
| | - Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
- Interdepartmental Centre for Water Research, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
18
|
Ma Y, Liu H, Du X, Petlulu P, Chen X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. IRE1 and CaMKKβ pathways to reveal the mechanism involved in microcystin-LR-induced autophagy in mouse ovarian cells. Food Chem Toxicol 2020; 147:111911. [PMID: 33290805 DOI: 10.1016/j.fct.2020.111911] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging water pollutant produced by blooming cyanobacteria. It could be absorbed into human body via contaminated food and drinking water causing severe reproductive toxicity. Previous studies showed that MC-LR could regulate autophagy by inducing endoplasmic reticulum (ER) stress thereby causing female reproductive toxicity. However, the molecular mechanisms of MC-LR-induced autophagy remain to be elucidated. It is known that IRE1 and CaMKKβ pathways are two important pathways involved in autophagy induced by ER stress. Hence, this study investigated the roles of both pathways in MC-LR-induced autophagy in mouse ovarian cells. The results showed that MC-LR significantly up-regulated the expression of autophagy marker proteins LC3Ⅱ and BECLIN1 and down-regulated the expression of P62 in vivo and in vitro. MC-LR-caused increase of autophagosomes could be observed in KK-1 cells by MDC staining. MC-LR induced the formation of autolysosomes as indicated by the overlap of LAMP1 and LC3. Meanwhile, MC-LR significantly activated the proteins in IRE1 pathway (IRE1, XBP1 and JNK) and in CaMKKβ pathway (CaMKKβ, AMPK, mTOR). Furthermore, MC-LR caused weight loss and ovarian histopathological damage in mice. In contrast, after the expression and function of IRE1 and CaMKKβ were inhibited with siRNA in vitro and by inhibitors (4μ8C and STO-609, respectively) in vivo, the up-regulation of LC3Ⅱ and BECLIN1 and the degradation of P62 induced by MC-LR were significantly suppressed. MC-LR-induced autophagosomes in KK-1 cells and autolysosomes in mouse ovarian cells were also decreased. Moreover, the knockdown of IRE1 and CaMKKβ relieved MC-LR-induced histopathological injury to mouse ovaries. These results indicated that MC-LR induced ovarian cell autophagy and ovarian injury via IRE1 and CaMKKβ pathways. This study is the first study revealing the molecular mechanisms of MC-LR-induced autophagy of ovarian cells and providing new insights into the female reproductive toxicity of MC-LR.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | | | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX 78264, USA
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|