1
|
Smith JE, Carminito C, Hamilton S, Newcomb KL, Randt C, Travenick S. Sensory integration of danger and safety cues may explain the fear of a quiet coyote. Proc Biol Sci 2023; 290:20231812. [PMID: 37876200 PMCID: PMC10598434 DOI: 10.1098/rspb.2023.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Sensory integration theory predicts natural selection should favour adaptive responses of animals to multiple forms of information, yet empirical tests of this prediction are rare, particularly in free-living mammals. Studying indirect predator cues offers a salient opportunity to inquire about multimodal risk assessment and its potentially interactive effects on prey responses. Here we exposed California ground squirrels from two study sites (that differ in human and domestic dog activity) to acoustic and/or olfactory predator cues to reveal divergent patterns of signal dominance. Olfactory information most strongly predicted space use within the testing arena. That is, individuals, especially those at the human-impacted site, avoided coyote urine, a danger cue that may communicate the proximity of a coyote. By contrast, subjects allocated less time to risk-sensitive behaviours when exposed to acoustic cues. Specifically, although individuals were consistent in their behavioural responses across trials, 'quiet coyotes' (urine without calls) significantly increased the behavioural reactivity of prey, likely because coyotes rarely vocalize when hunting. More broadly, our findings highlight the need to consider the evolution of integrated fear responses and contribute to an emerging understanding of how animals integrate multiple forms of information to trade off between danger and safety cues in a changing world.
Collapse
Affiliation(s)
- Jennifer E. Smith
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, WI, USA
- Department of Biology, Mills College, 5000 MacArthur Blvd, Oakland, CA 94631, USA
| | - Chelsea Carminito
- Department of Biology, Mills College, 5000 MacArthur Blvd, Oakland, CA 94631, USA
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, Cincinnati, OH 45221, USA
| | - Shea Hamilton
- Department of Biology, Mills College, 5000 MacArthur Blvd, Oakland, CA 94631, USA
| | - Kate Lee Newcomb
- Department of Biology, Mills College, 5000 MacArthur Blvd, Oakland, CA 94631, USA
| | - Clare Randt
- Department of Biology, Mills College, 5000 MacArthur Blvd, Oakland, CA 94631, USA
| | - Sarah Travenick
- Department of Biology, Mills College, 5000 MacArthur Blvd, Oakland, CA 94631, USA
| |
Collapse
|
2
|
Ortiz-Jimenez CA, Michelangeli M, Pendleton E, Sih A, Smith JE. Behavioural correlations across multiple stages of the antipredator response: do animals that escape sooner hide longer? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
|
4
|
Harris RJ, Nekaris KAI, Fry BG. Monkeying around with venom: an increased resistance to α-neurotoxins supports an evolutionary arms race between Afro-Asian primates and sympatric cobras. BMC Biol 2021; 19:253. [PMID: 34823526 PMCID: PMC8613972 DOI: 10.1186/s12915-021-01195-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background Snakes and primates have a multi-layered coevolutionary history as predators, prey, and competitors with each other. Previous work has explored the Snake Detection Theory (SDT), which focuses on the role of snakes as predators of primates and argues that snakes have exerted a selection pressure for the origin of primates’ visual systems, a trait that sets primates apart from other mammals. However, primates also attack and kill snakes and so snakes must simultaneously avoid primates. This factor has been recently highlighted in regard to the movement of hominins into new geographic ranges potentially exerting a selection pressure leading to the evolution of spitting in cobras on three independent occasions. Results Here, we provide further evidence of coevolution between primates and snakes, whereby through frequent encounters and reciprocal antagonism with large, diurnally active neurotoxic elapid snakes, Afro-Asian primates have evolved an increased resistance to α-neurotoxins, which are toxins that target the nicotinic acetylcholine receptors. In contrast, such resistance is not found in Lemuriformes in Madagascar, where venomous snakes are absent, or in Platyrrhini in the Americas, where encounters with neurotoxic elapids are unlikely since they are relatively small, fossorial, and nocturnal. Within the Afro-Asian primates, the increased resistance toward the neurotoxins was significantly amplified in the last common ancestor of chimpanzees, gorillas, and humans (clade Homininae). Comparative testing of venoms from Afro-Asian and American elapid snakes revealed an increase in α-neurotoxin resistance across Afro-Asian primates, which was likely selected against cobra venoms. Through structure-activity studies using native and mutant mimotopes of the α-1 nAChR receptor orthosteric site (loop C), we identified the specific amino acids responsible for conferring this increased level of resistance in hominine primates to the α-neurotoxins in cobra venom. Conclusion We have discovered a pattern of primate susceptibility toward α-neurotoxins that supports the theory of a reciprocal coevolutionary arms-race between venomous snakes and primates. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01195-x.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Bryan G Fry
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
5
|
Robinson KE, Holding ML, Whitford MD, Saviola AJ, Yates JR, Clark RW. Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey. J Evol Biol 2021; 34:1447-1465. [PMID: 34322920 DOI: 10.1111/jeb.13907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Predator-prey interactions often lead to the coevolution of adaptations associated with avoiding predation and, for predators, overcoming those defences. Antagonistic coevolutionary relationships are often not simple interactions between a single predator and prey but rather a complex web of interactions between multiple coexisting species. Coevolution between venomous rattlesnakes and small mammals has led to physiological venom resistance in several mammalian taxa. In general, viperid venoms contain large quantities of snake venom metalloproteinase toxins (SVMPs), which are inactivated by SVMP inhibitors expressed in resistant mammals. We explored variation in venom chemistry, SVMP expression, and SVMP resistance across four co-distributed species (California Ground Squirrels, Bryant's Woodrats, Southern Pacific Rattlesnakes, and Red Diamond Rattlesnakes) collected from four different populations in Southern California. Our aim was to understand phenotypic and functional variation in venom and venom resistance in order to compare coevolutionary dynamics of a system involving two sympatric predator-prey pairs to past studies that have focused on single pairs. Proteomic analysis of venoms indicated that these rattlesnakes express different phenotypes when in sympatry, with Red Diamonds expressing more typical viperid venom (with a diversity of SVMPs) and Southern Pacifics expressing a more atypical venom with a broader range of non-enzymatic toxins. We also found that although blood sera from both mammals were generally able to inhibit SVMPs from both rattlesnake species, inhibition depended strongly on the snake population, with snakes from one geographic site expressing SVMPs to which few mammals were resistant. Additionally, we found that Red Diamond venom, rather than woodrat resistance, was locally adapted. Our findings highlight the complexity of coevolutionary relationships between multiple predators and prey that exhibit similar offensive and defensive strategies in sympatry.
Collapse
Affiliation(s)
- Kelly E Robinson
- Department of Biology, San Diego State University, San Diego, CA, USA.,Department of Biology, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Matthew L Holding
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA.,Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Malachi D Whitford
- Department of Biology, San Diego State University, San Diego, CA, USA.,Ecology Graduate Group, University of California, Davis, CA, USA
| | - Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rulon W Clark
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
6
|
Uchida K, Ng R, Vydro SA, Smith JE, Blumstein DT. The benefits of being dominant: health correlates of male social rank and age in a marmot. Curr Zool 2021; 68:19-26. [PMID: 35169626 PMCID: PMC8836331 DOI: 10.1093/cz/zoab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
The benefits of dominance may not come without costs, particularly for males. For example, the “immunocompetence handicap hypothesis” states that males with enhanced mating success allocate resources to enhance reproductive output at a cost to their current health, whereas the “resource quality hypothesis” predicts that high-ranking males may benefit from increased reproduction and good health. Whereas the predictions from each have been well tested in captive animals and in a variety of highly social primates, fewer studies have been carried out in free-living, facultatively social animals. Using adult male yellow-bellied marmots (Marmota flaviventer), we evaluated predictions of these hypotheses by examining the relationship between social rank and 2 health indicators—fecal glucocorticoid metabolite (FCM) levels, and neutrophil/lymphocyte (N/L) ratios—after accounting for variation explained by age, body mass, and seasonality. We found that higher-ranking males tended to have a lower N/L ratio (reflecting good health) than lower-ranking individuals, whereas FCM levels were not significantly related to rank. In addition, heavier male marmots had lower N/L ratios, whereas body mass was not associated with FCM levels. We also found that older adult males had lower FCM levels (reflecting less physiological stress) but higher N/L ratios than younger adults. Finally, we found that FCM levels decreased as the active season progressed and FCM levels were associated with the time of the day. Overall, our results suggest that socially-dominant male marmots enjoyed better, not worse health in terms of lower N/L ratios.
Collapse
Affiliation(s)
- Kenta Uchida
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Rachel Ng
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Samuel A Vydro
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Jennifer E Smith
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
- Department of Biology, Mills College, Oakland, CA 94613, USA
| | - Daniel T Blumstein
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
7
|
Smith JE, Smith IB, Working CL, Russell ID, Krout SA, Singh KS, Sih A. Host traits, identity, and ecological conditions predict consistent flea abundance and prevalence on free-living California ground squirrels. Int J Parasitol 2021; 51:587-598. [PMID: 33508332 DOI: 10.1016/j.ijpara.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023]
Abstract
Understanding why some individuals are more prone to carry parasites and spread diseases than others is a key question in biology. Although epidemiologists and disease ecologists increasingly recognize that individuals of the same species can vary tremendously in their relative contributions to the emergence of diseases, very few empirical studies systematically assess consistent individual differences in parasite loads within populations over time. Two species of fleas (Oropsylla montana and Hoplopsyllus anomalous) and their hosts, California ground squirrels (Otospermophilus beecheyi), form a major complex for amplifying epizootic plague in the western United States. Understanding its biology is primarily of major ecological importance and is also relevant to public health. Here, we capitalize on a long-term data set to explain flea incidence on California ground squirrels at Briones Regional Park in Contra Costa County, USA. In a 7 year study, we detected 42,358 fleas from 2,759 live trapping events involving 803 unique squirrels from two free-living populations that differed in the amount of human disturbance in those areas. In general, fleas were most abundant and prevalent on adult males, on heavy squirrels, and at the pristine site, but flea distributions varied among years, with seasonal conditions (e.g., temperature, rainfall, humidity), temporally within summers, and between flea species. Although on-host abundances of the two flea species were positively correlated, each flea species occupied a distinctive ecological niche. The common flea (O. montana) occurred primarily on adults in cool, moist conditions in early summer whereas the rare flea (H. anomalous) was mainly on juveniles in hot, dry conditions in late summer. Beyond this, we uncovered significantly repeatable and persistent effects of host individual identity on flea loads, finding consistent individual differences among hosts in all parasite measures. Taken together, we reveal multiple determinants of parasites on free-living mammals, including the underappreciated potential for host heterogeneity - within populations - to structure the emergence of zoonotic diseases such as bubonic plague.
Collapse
Affiliation(s)
- Jennifer E Smith
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA.
| | - Imani B Smith
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Cecelia L Working
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA; Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA 30602, USA
| | - Imani D Russell
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Shelby A Krout
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Kajol S Singh
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|