1
|
Integrative interactomics applied to bovine fescue toxicosis. Sci Rep 2022; 12:4899. [PMID: 35318361 PMCID: PMC8941056 DOI: 10.1038/s41598-022-08540-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte’s effects on the animal’s microbiota and metabolism were investigated recently, but its effects in planta or on the plant–animal interactions have not been considered. We examined multi-compartment microbiota–metabolome perturbations using multi-‘omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.
Collapse
|
2
|
Global Impact of Ergot Alkaloids. Toxins (Basel) 2022; 14:toxins14030186. [PMID: 35324683 PMCID: PMC8949401 DOI: 10.3390/toxins14030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
|
3
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021. [PMID: 34835312 DOI: 10.1007/10.3390/microorganisms9112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021; 9:2186. [PMID: 34835312 PMCID: PMC8623577 DOI: 10.3390/microorganisms9112186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
5
|
González-López NM, Huertas-Ortiz KA, Leguizamon-Guerrero JE, Arias-Cortés MM, Tere-Peña CP, García-Castañeda JE, Rivera-Monroy ZJ. Omics in the detection and identification of biosynthetic pathways related to mycotoxin synthesis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4038-4054. [PMID: 34486583 DOI: 10.1039/d1ay01017d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycotoxins are secondary metabolites that are known to be toxic to humans and animals. On the other hand, some mycotoxins and their analogues possess antioxidant as well as antitumor properties, which could be relevant in the fields of pharmaceutical analysis and food research. Omics techniques are a group of analytical tools applied in the biological sciences in order to study genes (genomics), mRNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics). Omics have become a vital tool in the field of mycotoxins, especially contributing to the identification of biomarkers with potential use for the detection of mycotoxigenic species and the gathering of information about the biosynthetic pathways of mycotoxins in different environments. This approach has provided tools for the development of prevention strategies and control measures for different mycotoxins. Additionally, research has revealed important information about the impact of global warming and climate change on the prevalence of mycotoxin issues in society. In the context of foodomics, the aim is to apply omics techniques in order to ensure food safety. The objective of the present review is to determine the state of the art regarding the development of analytical techniques based on omics in the identification of biosynthetic pathways related to mycotoxin synthesis.
Collapse
Affiliation(s)
| | - Kevin Andrey Huertas-Ortiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| | | | | | | | | | - Zuly Jenny Rivera-Monroy
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| |
Collapse
|
6
|
Geddes-McAlister J, Sukumaran A, Patchett A, Hager HA, Dale JCM, Roloson JL, Prudhomme N, Bolton K, Muselius B, Powers J, Newman JA. Examining the Impacts of CO 2 Concentration and Genetic Compatibility on Perennial Ryegrass- Epichloë festucae var lolii Interactions. J Fungi (Basel) 2020; 6:jof6040360. [PMID: 33322591 PMCID: PMC7770580 DOI: 10.3390/jof6040360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation, turfgrass applications, and fodder for livestock. Lolium perenne forms a mutualism with the strictly vertically transmitted fungal endophyte, Epichloë festucae var lolii. The fungus produces alkaloids that protect the grass from herbivory, as well as conferring protection from drought and nutrient stress. The rising concentration of atmospheric CO2, a proximate cause of climatic change, is known to have many direct and indirect effects on plant growth. There is keen interest in how the nature of this plant-fungal interaction will change with climate change. Lolium perenne is an obligately outcrossing species, meaning that the genetic profile of the host is constantly being reshuffled. Meanwhile, the fungus is asexual implying both a relatively constant genetic profile and the potential for incompatible grass-fungus pairings. In this study, we used a single cultivar, "Alto", of L. perenne. Each plant was infected with one of four strains of the endophyte: AR1, AR37, NEA2, and Lp19 (the "common strain"). We outcrossed the Alto mothers with pollen from a number of individuals from different ryegrass cultivars to create more genetic diversity in the hosts. We collected seed such that we had replicate maternal half-sib families. Seed from each family was randomly allocated into the two levels of the CO2 treatment, 400 and 800 ppm. Elevated CO2 resulted in an c. 18% increase in plant biomass. AR37 produced higher fungal concentrations than other strains; NEA2 produced the lowest fungal concentrations. We did not find evidence of genetic incompatibility between the host plants and the fungal strains. We conducted untargeted metabolomics and quantitative proteomics to investigate the grass-fungus interactions between and within family and treatment groups. We identified a number of changes in both the proteome and metabalome. Taken together, our data set provides new understanding into the intricacy of the interaction between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.
Collapse
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
- Mass Spectrometry Facility—Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: (J.G.-M.); (J.A.N.)
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Aurora Patchett
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Heather A. Hager
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jenna C. M. Dale
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jennifer L. Roloson
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Nicholas Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Kim Bolton
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Benjamin Muselius
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Jacqueline Powers
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jonathan A. Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
- Correspondence: (J.G.-M.); (J.A.N.)
| |
Collapse
|