1
|
Boshra MH, El-Housseiny GS, Farag MMS, Aboshanab KM. Innovative approaches for mycotoxin detection in various food categories. AMB Express 2024; 14:7. [PMID: 38216801 PMCID: PMC10786816 DOI: 10.1186/s13568-024-01662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
Mycotoxins (MTs), produced by filamentous fungi, represent a severe hazard to the health of humans and food safety, affecting the quality of various agricultural products. They can contaminate a wide range of foods, during any processing phase before or after harvest. Animals and humans who consume MTs-contaminated food or feed may experience acute or chronic poisoning, which may result in serious pathological consequences. Accordingly, developing rapid, easy, and accurate methods of MTs detection in food becomes highly urgent and critical as a quality control and to guarantee food safety and lower health hazards. In this review, we highlighted and discussed innovative approaches like biosensors, fluorescent polarization, capillary electrophoresis, infrared spectroscopy, and electronic noses for MT identification pointing out current challenges and future directions. The limitations, current challenges, and future directions of conventional detection methods versus innovative methods have also been highlighted and discussed.
Collapse
Affiliation(s)
- Marina H Boshra
- Department of Mycotoxins, Central Public Health Laboratories (CPHL), Ministry of Health, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt
| | - Mohammed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Li Z, Jallow A, Nidiaye S, Huang Y, Zhang Q, Li P, Tang X. Improvement of the sensitivity of lateral flow systems for detecting mycotoxins: Up-to-date strategies and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13255. [PMID: 38284606 DOI: 10.1111/1541-4337.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxins are dangerous human and animal health-threatening secondary fungal metabolites that can be found in various food and agricultural products. Several countries have established regulations to restrict their presence in food and agricultural products destined for human and animal consumption. Consequently, the need to develop highly sensitive and smart detection systems was recognized worldwide. Lateral flow assay possesses the advantages of easy operation, rapidity, stability, accuracy, and specificity, and it plays an important role in the detection of mycotoxins. Nevertheless, strategies to comprehensively improve the sensitivity of lateral flow assay to mycotoxins in food have rarely been highlighted and discussed. In this article, a comprehensive overview was presented on the application of lateral flow assay in mycotoxin detection in food samples by highlighting the principle of lateral flow assay, presenting a detailed discussion on various analytical performance-improvement strategies, such as the development of high-affinity recognition reagents, immunogen immobilization methods, and signal amplification. Additionally, a detailed discussion on the various signal analyzers and interpretation approaches was provided. Finally, current hurdles and future perspectives on the application of lateral flow assay in the detection of mycotoxins were discussed.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Abdoulie Jallow
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Seyni Nidiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
3
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Baranovskaya VS, Berlina AN, Eremin SA. A Fluorescence Polarization Immunoassay Procedure for Determining Dibutyl Phthalate in Water. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Introduction to This Special Issue of Toxins: Application of Novel Methods for Mycotoxin Analysis. Toxins (Basel) 2022; 14:toxins14030190. [PMID: 35324687 PMCID: PMC8954468 DOI: 10.3390/toxins14030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Crop contamination by mycotoxins is a global problem that poses significant economic burdens due to the food/feed losses that are caused by reduced production rates; the resulting adverse effects on human and animal health and productivity; and the trade losses associated with the costs incurred by inspection, sampling, and analysis before and after shipments [...]
Collapse
|
6
|
Tittlemier S, Cramer B, Dall’Asta C, DeRosa M, Lattanzio V, Malone R, Maragos C, Stranska M, Sumarah M. Developments in mycotoxin analysis: an update for 2020-2021. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review summarises developments published in the period from mid-2020 to mid-2021 on the analysis of a number of diverse matrices for mycotoxins. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. The summary and discussion of this past year’s developments in detection and quantitation technology covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays using alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination, as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
| | - B. Cramer
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - M.C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Prague, Czech Republic
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|
7
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
8
|
Janik E, Niemcewicz M, Podogrocki M, Ceremuga M, Gorniak L, Stela M, Bijak M. The Existing Methods and Novel Approaches in Mycotoxins' Detection. Molecules 2021; 26:3981. [PMID: 34210086 PMCID: PMC8271920 DOI: 10.3390/molecules26133981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins represent a wide range of secondary, naturally occurring and practically unavoidable fungal metabolites. They contaminate various agricultural commodities like cereals, maize, peanuts, fruits, and feed at any stage in pre- or post-harvest conditions. Consumption of mycotoxin-contaminated food and feed can cause acute or chronic toxicity in human and animals. The risk that is posed to public health have prompted the need to develop methods of analysis and detection of mycotoxins in food products. Mycotoxins wide range of structural diversity, high chemical stability, and low concentrations in tested samples require robust, effective, and comprehensible detection methods. This review summarizes current methods, such as chromatographic and immunochemical techniques, as well as novel, alternative approaches like biosensors, electronic noses, or molecularly imprinted polymers that have been successfully applied in detection and identification of various mycotoxins in food commodities. In order to highlight the significance of sampling and sample treatment in the analytical process, these steps have been comprehensively described.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| |
Collapse
|