Spechenkova N, Kalinina NO, Zavriev SK, Love AJ, Taliansky M. ADP-Ribosylation and Antiviral Resistance in Plants.
Viruses 2023;
15:241. [PMID:
36680280 PMCID:
PMC9861866 DOI:
10.3390/v15010241]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
ADP-ribosylation (ADPRylation) is a versatile posttranslational modification in eukaryotic cells which is involved in the regulation of a wide range of key biological processes, including DNA repair, cell signalling, programmed cell death, growth and development and responses to biotic and abiotic stresses. Members of the poly(ADP-ribosyl) polymerase (PARP) family play a central role in the process of ADPRylation. Protein targets can be modified by adding either a single ADP-ribose moiety (mono(ADP-ribosyl)ation; MARylation), which is catalysed by mono(ADP-ribosyl) transferases (MARTs or PARP "monoenzymes"), or targets may be decorated with chains of multiple ADP-ribose moieties (PARylation), via the activities of PARP "polyenzymes". Studies have revealed crosstalk between PARylation (and to a lesser extent, MARylation) processes in plants and plant-virus interactions, suggesting that these tight links may represent a novel factor regulating plant antiviral immunity. From this perspective, we go through the literature linking PARylation-associated processes with other plant regulation pathways controlling virus resistance. Once unraveled, these links may serve as the basis of innovative strategies to improve crop resistance to viruses under challenging environmental conditions which could mitigate yield losses.
Collapse