1
|
Greco D, D’Ascanio V, Santovito E, Abbasciano M, Quintieri L, Techer C, Avantaggiato G. Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model. Foods 2025; 14:360. [PMID: 39941953 PMCID: PMC11817501 DOI: 10.3390/foods14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Mycotoxin detoxification by microorganisms offers a specific, economical, and environmentally sustainable alternative to physical/chemical methods. Three strains of B. subtilis, isolated from poultry farm environments and recognized by EFSA as safe in animal nutrition for all animal species, consumers, and the environment, were screened for their ability to remove mycotoxins. All of them demonstrated mycotoxin-dependent removal efficacy, being very effective against ZEA and its analogues (α- and β-ZOL, α- and β-ZAL, and ZAL) achieving up to 100% removal within 24 h under aerobic, anaerobic, and restrictive growth conditions with toxins as the sole carbon source. ZEA removal remained effective across a wide range of pH values (5-8), temperatures (20-40 °C), and at high toxin concentrations (up to 10 µg/mL). Additionally, up to 87% ZEA removal was achieved after 48 h of incubation (30 °C) of the strains in a contaminated liquid food model containing 1 µg/mL of the toxin. Mechanistic studies suggest that ZEA detoxification involves metabolic processes rather than physical adsorption or entrapment into bacterial cells. Enzymatic activities within the bacterial cells or associated with their cell walls likely play a role in the metabolization of the toxin. Interestingly, it has been observed that growth conditions and culture media can influence the metabolization and/or conjugation of the toxin, which can result in the production of various metabolites. Further investigation is needed to identify these metabolites and assess their safety.
Collapse
Affiliation(s)
- Donato Greco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Elisa Santovito
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Mariagrazia Abbasciano
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Clarisse Techer
- Mixscience, 2/4 Avenue de Ker Lann, CS17228, CEDEX, 35172 Bruz, France;
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| |
Collapse
|
2
|
Wu Y, Zhou Q, Hu J, Shan Y, Liu J, Wang G, Lee YW, Shi J, Xu J. Characterization of the Phosphotransferase from Bacillus subtilis 1101 That Is Responsible for the Biotransformation of Zearalenone. Toxins (Basel) 2025; 17:21. [PMID: 39852973 PMCID: PMC11768653 DOI: 10.3390/toxins17010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Bacillus microorganisms play an important role in the zearalenone (ZEA) biotransformation process in natural environments. The phosphotransferase pathway in Bacillus is both widespread and relatively well conserved. However, the reaction kinetics of these phosphotransferases remain poorly understood, and their catalytic activities are suboptimal. In this study, a ZEA phosphotransferase, ZPH1101, was identified from Bacillus subtilis 1101 using genome sequencing. The product transformed by ZPH1101 was identified as phosphorylated ZEA (ZEA-P) through LC-TOF-MS/MS analysis. The experiments conducted on MCF-7 cells demonstrated that ZEA-P exhibited a lower level of estrogenic toxicity than ZEA. The optimal reaction conditions for ZPH1101 were determined to be 45 °C and pH 8.0. The maximum velocity (Vmax), Michaelis constant (Km), and catalytic constant (kcat) were calculated through fitting to be 16.40 μM·s-1·mg-1, 18.18 μM, and 54.69 s-1, respectively. Furthermore, adding 1 mmol/L Fe2+ or Fe3+ to the reaction system increased the efficiency of ZPH1101 in converting ZEA by 100% relative to the system containing solely 1 mmol/L ATP and 1 mmol/L Mg2+, suggesting that low concentrations of Fe2+ or Fe3+ can improve the ZPH1101-mediated transformation of ZEA. This study contributes to the enzymatic removal of ZEA and broadens the spectrum of strain and enzyme options available to researchers for ZEA detoxification efforts.
Collapse
Affiliation(s)
- Yuzhuo Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (G.W.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
| | - Qiuyu Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Junqiang Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
- College of Life Science, Nanjing Agriculture University, Nanjing 210095, China
| | - Yunfan Shan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
- College of Life Science, Nanjing Agriculture University, Nanjing 210095, China
| | - Jinyue Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Gang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (G.W.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
- School of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
| | - Jianhong Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (G.W.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.Z.); (J.H.); (Y.S.); (J.L.); (Y.-W.L.); (J.S.)
- College of Life Science, Nanjing Agriculture University, Nanjing 210095, China
| |
Collapse
|
3
|
Asaduzzaman M, Pavlov I, St-Jean G, Zhu Y, Castex M, Chorfi Y, Del Castillo JRE, Zhou T, Alassane-Kpembi I. Phosphorylation of Zearalenone Retains Its Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26491-26503. [PMID: 39549027 DOI: 10.1021/acs.jafc.4c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Microbial biotransformation of Zearalenone (ZEN) is a promising deactivation approach. The residual toxicity and stability of Zearalenone-14-phosphate (ZEN-14-P) and Zearalenone-16-phosphate (ZEN-16-P), two novel microbial phosphorylation products of ZEN, remain unknown. We investigated the cytotoxicity, oxidative stress, proinflammatory, and estrogenic activity of phosphorylated ZENs using porcine intestinal cells, uterine explants, and human endometrial cells and traced their metabolic fate by liquid chromatography-tandem mass spectrometry (LC-MS)/MS analysis. The phosphorylated ZENs significantly decreased the viability of the IPEC-J2 and Ishikawa cells. Similar to ZEN, phosphorylation products induced significant oxidative stress, activated the expression of proinflammatory cytokines, and demonstrated estrogenic activity through upregulation of estrogen-responsive genes, activation of alkaline phosphatase, and proliferation of endometrial glands. LC-MS/MS analysis pointed out that although phosphorylated ZENs are partially hydrolyzed to ZEN, their respective metabolic pathways differ. We conclude that phosphorylation might not be sufficient to detoxify ZEN, leaving its cytotoxic, proinflammatory, and estrogenic properties intact.
Collapse
Affiliation(s)
- Muhammad Asaduzzaman
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Ivan Pavlov
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Guillaume St-Jean
- Département de Pathologie et Microbiologie, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Mathieu Castex
- Lallemand SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac Cedex, France
| | - Younes Chorfi
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Jérôme R E Del Castillo
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Imourana Alassane-Kpembi
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
4
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
5
|
Gari J, Abdella R. Degradation of zearalenone by microorganisms and enzymes. PeerJ 2023; 11:e15808. [PMID: 37601268 PMCID: PMC10434127 DOI: 10.7717/peerj.15808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. Zearalenone is a secondary metabolite produced by fungi of the genus Fusarium, widely exists in animal feed and human food. One concern with the use of microbial strains and their enzyme derivatives for zearalenone degradation is the potential variability in the effectiveness of the degradation process. The efficiency of degradation may depend on various factors such as the type and concentration of zearalenone, the properties of the microbial strains and enzymes, and the environmental conditions. Therefore, it is important to carefully evaluate the efficacy of these methods under different conditions and ensure their reproducibility. Another important consideration is the safety and potential side effects of using microbial strains and enzymes for zearalenone degradation. It is necessary to evaluate the potential risks associated with the use of genetically modified microorganisms or recombinant enzymes, including their potential impact on the environment and non-target organisms. Additionally, it is important to ensure that the degradation products are indeed harmless and do not pose any health risks to humans or animals. Furthermore, while the use of microbial strains and enzymes may offer an environmentally friendly and cost-effective solution for zearalenone degradation, it is important to explore other methods such as physical or chemical treatments as well. These methods may offer complementary approaches for zearalenone detoxification, and their combination with microbial or enzyme-based methods may improve overall efficacy. Overall, the research on the biodegradation of zearalenone using microorganisms and enzyme derivatives is promising, but there are important considerations that need to be addressed to ensure the safety and effectiveness of these methods. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation of zearalenone using microorganisms and enzyme derivatives to nontoxic products. Further research is needed to fully evaluate the potential of these methods for mitigating the impact of mycotoxins in food and feed.
Collapse
Affiliation(s)
- Jiregna Gari
- Department of Veterinary Laboratory Technology, Ambo University, Ambo, Oromia, Ethiopia
| | - Rahma Abdella
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
7
|
Li F, Zhao X, Jiao Y, Duan X, Yu L, Zheng F, Wang X, Wang L, Wang JS, Zhao X, Zhang T, Li W, Zhou J. Exposure assessment of aflatoxins and zearalenone in edible vegetable oils in Shandong, China: health risks posed by mycotoxin immunotoxicity and reproductive toxicity in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3743-3758. [PMID: 35953745 DOI: 10.1007/s11356-022-22385-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Human exposure to aflatoxins (AFs) and zearalenone (ZEA) has not been sufficiently investigated. Here, we analyzed the exposure level and health risks posed by AFs (B1, B2, G1, G2) and ZEA through cooking oil consumption in Shandong, China. The individual daily consumption of cooking oil was calculated through 2745 questionnaires during 2017-2019. The average contamination levels of mycotoxins were estimated by examining 60 cooking oil samples. For the peanut oil, AFs ranged from <0.2 to 274 μg/kg, with a positive rate of 66.6% (20/30). Average levels of 36.62 μg/kg AFB1 and 44.43 μg/kg total AFs were found. Over-the-limit level (20 μg/kg) of AFB1 was detected in 8/30 samples. Estimated daily intake (EDI) and margin of exposure (MOE) for age-stratified population groups showed that children are facing highest adverse health risk with AFB1 (MOE 5.88-6.39). The liver cancer incidences attributable to AFB1 exposure are non-negligible as 0.896, 0.825, and 0.767 cases per 100,000 for 6-14 age group, 15-17 age group, and adult labor-intensive workers. Over-the-limit level (60 μg/kg) ZEA contamination was detected in 25/30 corn oil samples with a 50th percentile value of 97.95 μg/kg. Our health risk assessment suggested significant health risks of enterohepatic (inflammation and cancer), reproductive, and endocrine systems posed by AFs and ZEA. However, the health risk of immunotoxicity is unclear because currently animal study data are not available for the immunotoxicity induced after long-term exposure. In general, the health risks posed by mycotoxins are non-negligible and long-term mycotoxin surveillance is necessary.
Collapse
Affiliation(s)
- Fenghua Li
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xinglan Duan
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China
| | - Lianlong Yu
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Fengjia Zheng
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xiaolin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Wei Li
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Jun Zhou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China.
| |
Collapse
|
8
|
Abraham N, Chan ETS, Zhou T, Seah SYK. Microbial detoxification of mycotoxins in food. Front Microbiol 2022; 13:957148. [PMID: 36504774 PMCID: PMC9726736 DOI: 10.3389/fmicb.2022.957148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by certain genera of fungi including but not limited to Fusarium, Aspergillus, and Penicillium. Their persistence in agricultural commodities poses a significant food safety issue owing to their carcinogenic, teratogenic, and immunosuppressive effects. Due to their inherent stability, mycotoxin levels in contaminated food often exceed the prescribed regulatory thresholds posing a risk to both humans and livestock. Although physical and chemical methods have been applied to remove mycotoxins, these approaches may reduce the nutrient quality and organoleptic properties of food. Microbial transformation of mycotoxins is a promising alternative for mycotoxin detoxification as it is more specific and environmentally friendly compared to physical/chemical methods. Here we review the biological detoxification of the major mycotoxins with a focus on microbial enzymes.
Collapse
Affiliation(s)
- Nadine Abraham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Edicon Tze Shun Chan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada,*Correspondence: Stephen Y. K. Seah,
| |
Collapse
|
9
|
Zhang Y, Li Z, Lu Y, Zhang J, Sun Y, Zhou J, Tu T, Gong W, Sun W, Wang Y. Characterization of Bacillus velezensis E2 with abilities to degrade ochratoxin A and biocontrol against Aspergillus westerdijkiae fc-1. Toxicon 2022; 216:125-131. [PMID: 35850255 DOI: 10.1016/j.toxicon.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA), primarily produced by the fungi belonging to the species of Aspergillus and Penicillium, is one of the most common mycotoxins found in cereals and fruits. In addition to resulting in huge economic losses, OTA contamination also poses considerable threat to human and livestock health. Microbial degradation of mycotoxins has been considered with great potential in mycotoxins decontamination. In a previous study, Bacillus velezensis E2 was isolated by our laboratory and showed appreciable inhibitory effect on Aspergillus flavus growth and aflatoxin production in rice grains. In this study, B. velezensis E2 was investigated for its ability to remove OTA and biocontrol against the ochratoxigenic Aspergillus westerdijkiae fc-1. The results revealed that B. velezensis E2 has considerable inhibitory effect on A. westerdijkiae fc-1 both on PDA medium and pear fruits, with inhibitory rate of 51.7% and 73.9%, respectively. In addition, its ability to remove OTA was evaluated in liquid medium and the results showed that more than 96.1% of OTA with an initial concentration of 2.5 μg/mL could be removed by B. velezensis E2 in 48 h. Further experiments revealed that enzymatic transformation and alkaline hydrolysis might be the main mechanisms related to OTA degradation by B. velezensis E2, with ring open ochratoxin α (OP-OTα) as a possible degradation product. Our study indicated that the B. velezensis E2 strain could be a potential bacterial candidate in biodegradation of OTA and biocontrol against A. westerdijkiae fc-1.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhenchao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yenan Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaqi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yemei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiayu Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weihong Sun
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151192. [PMID: 34710421 DOI: 10.1016/j.scitotenv.2021.151192] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxin, as one of the most common pollutants in foodstuffs, poses great threat to food security and human health. Specifically, deoxynivalenol (DON) and zearalenone (ZEN)-two mycotoxin contaminants with considerable toxicity widely existing in food products-have aroused broad public concerns. Adding to this picture, modified forms of DON and ZEN, have emerged as another potential environmental and health threat, owing to their higher re-transformation rate into parent mycotoxins inducing accumulation of mycotoxin in humans and animals. Given this, a better understanding of the toxicity of modified mycotoxins is urgently needed. Moreover, the lack of toxicity data means a proper risk assessment of modified mycotoxins remains challenging. To better evaluate the toxicity of modified DON and ZEN, we have reviewed the relationship between their structures and toxicities. The toxicity mechanisms behind modified DON and ZEN have also been discussed; briefly, these involve acute, subacute, chronic, and combined toxicities. In addition, this review also addresses the global occurrence of modified DON and ZEN, and summarizes novel methods-including in silico analysis and implementation of relative potency factors-for risk assessment of modified DON and ZEN. Finally, the health risk assessment of modified DON and ZEN has also been discussed comprehensively.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hao-Nan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang-Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|