1
|
Yan KX, Ge BJ, Sang R, Zhao P, Liu XM, Yu MH, Liu XT, Qiu Q, Zhang XM. Taraxasterol attenuates zearalenone-induced kidney damage in mice by modulating oxidative stress and endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117093. [PMID: 39317070 DOI: 10.1016/j.ecoenv.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Taraxasterol is one of the bioactive ingredients from traditional Chinese herb Taraxacum, which exhibits multiple pharmacological activities and protective effects. However, the underlying influence and mechanism of its use against kidney damage caused from zearalenone (ZEA) remain unexplored. The ZEA-induced kidney damage model of mice was established by feeding diets containing ZEA (2 mg/kg), and taraxasterol (5 and 10 mg/kg) was administered by gavage for 28 days. Results demonstrated taraxasterol increased average daily gain (ADG) and average daily feed intake (ADFI), reduced feed-to-gain ratio (F/G) and kidney index of mice induced by ZEA. Taraxasterol alleviated histopathological changes of kidney, reduced ZEA residue and the levels of blood urea nitrogen (BUN), uric acid (UA), and creatinine (CRE). Concurrently, taraxasterol reduced the contents of oxidative stress indicator reactive oxygen species (ROS) and malondialdehyde (MDA), and increased the activities of antioxidant enzymes catalase (CAT), total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px). Further, taraxasterol up-regulated the mRNA and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), GSH-Px, NAD(P)H quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1), and down-regulated the mRNA and protein expression of KELCH like ECH associated protein (Keap1) in Nrf2/Keap1 pathway. Taraxasterol down-regulated the mRNA and protein expression of immunoglobulin binding protein (Bip), C/EBP homologous protein (CHOP), Bcl-2 associated X (Bax), cysteine protease (Caspase)-12, and Caspase-3, and up-regulated B-cell lymphoma 2 (Bcl-2) expression in endoplasmic reticulum stress pathway. This study suggests that taraxasterol attenuates ZEA-induced mouse kidney damage through the modulation of Nrf2/Keapl pathway to play antioxidant role and endoplasmic reticulum stress pathway to enhance anti-apoptotic ability. It will provide a basis for taraxasterol as a potential drug to prevent and treat ZEA-induced kidney damage.
Collapse
Affiliation(s)
- Ke-Xin Yan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Bing-Jie Ge
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Rui Sang
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Peng Zhao
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Xin-Man Liu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Ming-Hong Yu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Xiao-Tong Liu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Qian Qiu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Xue-Mei Zhang
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| |
Collapse
|
2
|
Wang H, She F, Chen F, Li K, Qin S. Selenium-Chitosan Protects Porcine Endometrial Epithelial Cells from Zearalenone-induced Apoptosis via the JNK/SAPK Signaling Pathway. Biol Trace Elem Res 2024; 202:2075-2084. [PMID: 37610602 DOI: 10.1007/s12011-023-03816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
This study was designed to assess whether selenium-chitosan (Se-CTS) can protect porcine endometrial epithelial cells (PEECs) against damage and apoptosis induced by zearalenone (ZEA) via modulating the JNK/SAPK signaling pathway. The cell cycle, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and apoptosis rates of porcine endometrial epithelial cells were determined, as well as the expression levels of genes related to the SAPK/JNK signaling pathway. The results showed that 3.0 µmol/L Se-CTS decreased the percentage of ZEA-induced G1 phase in PEECs (P < 0.01), whereas 1.5 and 3.0 µmol/L Se-CTS increased the percentage of ZEA-induced percentage of G2 phase of PEECs (P < 0.01). Further, Se-CTS at 1.5 and 3.0 µmol/L improved the ZEA-induced decrease in MMP (P < 0.01), whereas Se-CTS at 0.5, 1.5, and 3.0 µmol/L reduced the increase in ROS levels and apoptosis rate induced by ZEA in PEECs (P < 0.01 or P < 0.05). Furthermore, 3.0 µmol/L Se-CTS ameliorated the increase in the expression of c-Jun N-terminal kinase (JNK), apoptosis signal-regulated kinase (ASK1), and c-Jun induced by ZEA (P < 0.01) and the reduction in mitogen-activated protein kinase kinase 4 (MKK4) and protein 53 (p53) expression (P < 0.01), while 1.5 µmol/L Se-CTS improved the expression of ASK1 and c-Jun induced by ZEA (P < 0.05). The results proved that Se-CTS alleviates ZEA-induced cell cycle stagnation, cell mitochondrial damage, and cell apoptosis via decreasing ZEA-produced ROS and modulating the JNK/SAPK signaling pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Chengyang District, No 700 Changcheng Road, Qingdao, 266109, China.
| | - Kun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China.
- Department of Agricultural Science and Technology, Hotan Vocational and Technical College, 10 Jinghuai Avenue, Beijing Industrial Zone, Hotan, 848000, China.
| |
Collapse
|
3
|
Li Y, Cai L, Bi Q, Sun W, Pi Y, Jiang X, Li X. Genistein Alleviates Intestinal Oxidative Stress by Activating the Nrf2 Signaling Pathway in IPEC-J2 Cells. Vet Sci 2024; 11:154. [PMID: 38668421 PMCID: PMC11053601 DOI: 10.3390/vetsci11040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
In the weaning period, piglets often face oxidative stress, which will cause increased diarrhea and mortality. Genistein, a flavonoid, which is extracted from leguminous plants, possesses anti-inflammatory and antioxidative bioactivities. However, little is known about whether genistein could attenuate the oxidative stress that occurs in porcine intestinal epithelial cells (IPEC-J2). Herein, this experiment was carried out to investigate the protective effects of genistein in the IPEC-J2 cells oxidative stress model. Our results disclosed that H2O2 stimulation brought about a significant diminution in catalase (CAT) activity and cell viability, as well as an increase in the levels of reactive oxygen species (ROS) in IPEC-J2 cells (p < 0.05), whereas pretreating cells with genistein before H2O2 exposure helped to alleviate the reduction in CAT activity and cell viability (p < 0.05) and the raise in the levels of ROS (p = 0.061) caused by H2O2. Furthermore, H2O2 stimulation of IPEC-J2 cells remarkably suppressed gene level Nrf2 and CAT expression, in addition to protein level Nrf2 expression, but pretreating cells with genistein reversed this change (p < 0.05). Moreover, genistein pretreatment prevented the downregulation of occludin expression at the gene and protein level, and ZO-1 expression at gene level (p < 0.05). In summary, our findings indicate that genistein possesses an antioxidant capacity in IPEC-J2 cells which is effective against oxidative stress; the potential mechanism may involve the Nrf2 signaling pathway. Our findings could offer a novel nutritional intervention strategy to enhance the intestinal health of piglets during the weaning process.
Collapse
Affiliation(s)
- Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Qingyue Bi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| |
Collapse
|
4
|
Cao Y, Shan Y, Wang G, Wu Z, Wang H, Wu S, Yin Z, Wei J, Bao W. Integrated of multi-omics and molecular docking reveal PHGDH, PSAT1 and PSPH in the serine synthetic pathway as potential targets of T-2 toxin exposure in pig intestinal tract. Int J Biol Macromol 2023; 253:126647. [PMID: 37678681 DOI: 10.1016/j.ijbiomac.2023.126647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
T-2 toxin (T-2) with a molecular weight of 466.52 g/mol is an inevitable mycotoxin in food products and feeds, posing a significant threat to human and animal health. However, the underlying molecular mechanisms of the cytotoxic effects of T-2 exposure on porcine intestinal epithelial cells (IPEC-J2) remain unclear. Here, we investigated the cytotoxic effects of T-2 exposure on IPEC-J2 through the detection of cell viability, cell morphology, mitochondrial membrane potential, ROS, apoptosis and autophagy. Further transcriptomic and proteomic analyses of IPEC-J2 upon T-2 exposure were performed by using RNA-seq and TMT techniques. A total of 546 differential expressed genes (DEGs) and 269 differentially expressed proteins (DEPs) were detected. Among these, 24 common DEGs/DEPs were involved in IPEC-J2 upon T-2 exposure. Interestingly, molecular docking analysis revealed potential interactions between T-2 and three key enzymes (PHGDP, PSAT1, and PSPH) in the serine biosynthesis pathway. Besides, further experimental showed that PSAT1 knockdown exacerbated T-2-induced oxidative damage. Together, our findings indicated that the serine biosynthesis pathway including PHGDP, PSAT1, PSPH genes probably acts critical roles in the regulation of T-2-induced cell damage. This study provided new insights into the global molecular effects of T-2 exposure and identified the serine biosynthesis pathway as molecular targets and potential treatment strategies against T-2.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yiyi Shan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit 48202, United States
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Xiong L, Lin T, Yue X, Zhang S, Liu X, Chen F, Zhang S, Guan W. Maternal Selenium-Enriched Yeast Supplementation in Sows Enhances Offspring Growth and Antioxidant Status through the Nrf2/Keap1 Pathway. Antioxidants (Basel) 2023; 12:2064. [PMID: 38136184 PMCID: PMC10740904 DOI: 10.3390/antiox12122064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This study evaluated the effects of maternal selenium-enriched yeast (SeY) supplementation during late gestation and lactation on sow performance, transfer of selenium (Se) and redox status, and gut microbiota community, as well as on the gut health of offspring. Seventy pregnant sows on day 85 of gestation were randomly allocated to the following two treatments: (1) sows who were fed a basal diet (basal diet contained 0.3 mg/kg Se as Na2SeO3, n = 35); (2) and sows who were fed a SeY-supplemented diet (basal diet with 0.2 mg/kg Se as SeY, n = 35). The offspring piglets were only cross-fostered within the group on day 3 of lactation (L3) according to the pig farm epidemic prevention policy. The plasma, milk, and feces samples from 10 sows, as well as plasma and intestinal samples per treatment, were collected on L1 and L21, respectively. Our results showed that maternal SeY supplementation increased the first week average weight and ADG of piglets (p < 0.05). Compared with the CON group, the SeY supplementation increased the Se content in the plasma and milk of sows and the plasma of piglets on L1 and L21 (p < 0.05). In addition, in sows, the levels of fat in the milk on L21, the level of IgA, T-AOC, and GSH-Px in the plasma on L21, and the level of T-AOC and GSH-Px in the colostrum were increased, while the MDA content was decreased in the plasma on L1 and in the colostrum and milk on L14 (p < 0.05). In the piglet plasma, the levels of IgA on L1 and L21, GSH-Px on L1, and GSH on L21 were increased, while the MDA content was decreased on L1 (p < 0.05). Maternal SeY supplementation up-regulated the small intestinal protein abundances of MUC1, E-cadherin, ZO-1, occludin, and claudin and activated the Nrf2/Keap1 signaling pathway in weaned offspring piglets. The 16S rRNA sequencing results showed that fecal microbiota had distinct separations during lactation, and the relative abundances of unclassified_f_Lachnospiraceae, Prevotaceae_UCG-001, and Lachnospiraceae_NK4A136_group were increased on L1. Collectively, the current findings suggest that maternal SeY supplementation during late gestation and lactation could improve the piglet's growth performance, Se status, antioxidant capacity and immunoglobulins transfer at the first week of lactation, as well as alter the fecal microbiota composition by increasing antioxidative-related and SCFA-producing microbiota in sows. These changes contributed to enhancing the small intestinal barrier function and activating the Nrf2/Keap1 pathway in offspring.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Wang C, Fu Y, Wang R, Wang Q, Yu H, Zhang J. Quercetin Attenuates the Combined Effects of Zearalenone and Lipopolysaccharide on IPEC-J2 Cell Injury through Activating the Nrf2 Signaling Pathway. Toxins (Basel) 2023; 15:679. [PMID: 38133183 PMCID: PMC10748267 DOI: 10.3390/toxins15120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin with an estrogen-like effect that is widely found in feed. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are a common endotoxin, and both toxins have effects on human and livestock health. During animal feeding, ZEA as an exotoxin and LPS as an endotoxin have the potential to co-exist in organisms. At present, other studies have only focused on the hazards of single toxins, but there are fewer studies on the coexistence and interaction between ZEA and LPS. Therefore, a further study to investigate the combined toxic effects of different concentrations of ZEA and LPS is warranted. Quercetin (QUE) is a natural flavonoid compound with strong antioxidant and anti-inflammatory properties. It is unclear whether QUE can mitigate the combined effects of ZEA and LPS. IPEC-J2, isolated from the jejunum of non-breastfed neonatal piglets, is an ideal model for the study of epithelial cell transport, intestinal bacterial interactions, and the nutrient modulation of intestinal function. Therefore, the purpose of the present study was to demonstrate the effect of QUE in alleviating the combined toxic effect of ZEA and LPS on IPEC-J2 cell damage. Cell viability was measured after treating IPEC-J2 cells sequentially with 10, 20, 30, 40, 60, 80, and 100 μM ZEA, 1, 10, 50, and 100 μg/mL LPS, and 20, 40, 60, 80, 100, and 200 μM QUE for 24 h. Based on the cell viability results, 20 μM ZEA and 1 μg/mL LPS were selected as the most suitable concentrations for further analysis. For QUE, 20 μM increased the cell viability, while 40-200 μM QUE decreased the cell viability. Therefore, for the subsequent study, 20 μM QUE was selected in combination with 20 μM ZEA and 1 μg/mL LPS. The results showed that QUE increased the cellular viability and decreased the LDH content more compared to the effects of the ZEA+LPS group. At the gene level, QUE addition up-regulated the expression of Nrf2, HO-1, SOD2, and NQO1 at the gene or protein level compared to those of the ZEA+LPS group. The measurement of tight junction-related genes and proteins showed QUE up-regulated the expression of Claudin, ZO-1, and Occludin genes and proteins more than in the ZEA+LPS group. QUE addition reduced the rate of apoptosis more than that in the ZEA+LPS group. The expressions of Bcl-2 and Bax were examined at the gene level, and QUE addition significantly reduced the Bax gene expression level compared to that of the ZEA+LPS group, but there was no apparent variation in the expression level of Bcl-2. In summary, QUE can alleviate the combined toxic effects of ZEA and LPS on IPEC-J2 cells via modulating the Nrf2 signaling pathway, up-regulating the expression of antioxidative genes, and enhancing the intestinal barrier.
Collapse
Affiliation(s)
- Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Yurong Fu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang 050035, China;
| | - Ruqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Qiyuan Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Hao Yu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Jing Zhang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| |
Collapse
|
7
|
Wang J, Tian H, Liu H, Wen J, Huang R, Zou K, Hou L, Li P. Low dose of zearalenone inhibited the proliferation of porcine prospermatogonia and transformed the physiology through cytokine-cytokine receptor interaction. Theriogenology 2023; 211:49-55. [PMID: 37572600 DOI: 10.1016/j.theriogenology.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/15/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin functions as an endocrine disrupter to the reproductive systems of farm animals, especially in pigs. To evaluate the effect and the underlying molecular changes that occurred when the porcine germline stem cells were exposed to ZEA, prospermatogonia (ProSGs) were enriched and treated with a gradient concentration (0-10 μM) of ZEA for 2-8 days. Our results showed that the ZEA treatment inhibited the proliferation of ProSGs in a dose-dependent manner with a critical concentration at 1 μM. Transcriptome analysis revealed that the differentially expressed genes mainly concentrated on the molecular function of positive regulation of response to stimulus, and the most enriching pathway is cytokine-cytokine receptor interaction. ZEA exposure decreased a buck of cytokine/chemokine expression involved in the inflammatory response and stem cells maintenance/self-renewal, moreover, some energy expenditure and anti-apoptosis genes were also down-regulated, while the up-regulated genes were mainly connected with the innate immunity. These data demonstrate that ZEA induces multiply cellular damage and may eventually do harm to the health and fertility of animals.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hairui Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruihua Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liming Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China.
| | - Pinghua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
8
|
Bai J, Deng S, Zhang X, Dai Z, Ji Y, Zeng S, Ren F, Yang Y, Wu Z. Cinnamaldehyde alleviates zearalenone-induced LS174T cell apoptosis, barrier dysfunction and mucin reduction through JNK/NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115276. [PMID: 37499382 DOI: 10.1016/j.ecoenv.2023.115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
As a natural aldehyde organic compound, cinnamaldehyde (CA) is one of the main components of cinnamon essential oil with multiple bioactivities. In this study, we investigated the protective effects of CA on zearalenone (ZEA)-induced apoptosis, barrier dysfunction and mucin reduction, as well as underlying mechanisms in LS174T cells. In the present study, cells pre-treated with or without CA for 24 h were left untreated or subjected to ZEA for indicated time points Our results showed that 10 μM CA significantly prevented ZEA-induced cell viability decline, reversed ZEA-induced increase of the LDH level, cell cycle disruption and apoptosis in LS174T cells. Periodic acid-schiff (PAS) staining analysis showed that CA significantly alleviated the reduction of mucin secretion in LS174T cells caused by ZEA exposure. Western blot analysis showed that CA significantly reversed ZEA-induced reduction of the expression of mucin 2 (MUC2) and tight junction (TJ) proteins (claudin-1, claudin-3, ZO-1 and ZO-2) in LS174T cells. Notably, CA can significantly reduce the upregulation of the main effector of MAPK and NF-κB signaling pathways in LS174T cells. Further study showed that CA protects cells against ZEA-induced cellular damage through JNK/NF-κB signaling pathway in LS174T cells. Supplementation with CA might be an potential strategy to alleviate the damaging effect of ZEA on epithelial cells.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China
| | - Shenming Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, PR China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
9
|
Guan H, Ma W, Wu Q, Cai J, Zhang Z. Exploring the Toxic Effects of ZEA on IPEC-J2 Cells from the Inflammatory Response and Apoptosis. Animals (Basel) 2023; 13:2731. [PMID: 37684994 PMCID: PMC10487149 DOI: 10.3390/ani13172731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Zearalenone (ZEA) is the most common fungal toxin contaminating livestock and poultry feeding, especially in pigs, causing severe toxic effects and economic losses. However, the mechanism of ZEA damage to the intestine is unknown. We constructed an in vitro model of ZEA toxicity in a porcine small intestinal epithelial cell (IPEC-J2) line. ZEA causes severe oxidative stress in porcine small intestine cells, such as the production of ROS and a significant decrease in the levels of antioxidant enzymes GSH, CAT, SOD, and T-AOC. ZEA also caused apoptosis in porcine small intestine cells, resulting in a significant reduction in protein and/or mRNA expression of apoptosis-related pathway factors such as P53, caspase 3, caspase 9, Bax, and Cyt-c, which in turn caused a significant decrease in protein and/or mRNA expression of inflammatory-related factors such as IL-1β, IL-2, Cox-2, NF-κD, NLRP3, IL-6, and IL -18, which in turn caused a significant increase in protein and/or mRNA expression levels. The final results suggest that ZEA can cause a severe toxic response in porcine small intestine cells, with oxidative stress, apoptotic cell death and inflammatory damage.
Collapse
Affiliation(s)
- Haoyue Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
| |
Collapse
|
10
|
Deng J, Huang JC, Xu ZJ, Liu Y, Karrow NA, Liu M, Sun LH. Remediation Strategies for Mycotoxins in Animal Feed. Toxins (Basel) 2023; 15:513. [PMID: 37755939 PMCID: PMC10535302 DOI: 10.3390/toxins15090513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Mycotoxins occur widely in various animal feedstuffs, with more than 500 mycotoxins identified so far [...].
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| | - Jun-Cheng Huang
- Hubei Jin Xu Agricultural Development Limited by Share Ltd., Wuhan 430015, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| | - Ying Liu
- Tianjin Animal Disease Prevention and Control Center, Tianjin 300402, China
| | | | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.)
| |
Collapse
|
11
|
Zhang M, Li X, Cui X, Li R, Ma Z, Gao X. Selenomethionine promotes ANXA2 phosphorylation for proliferation and protein synthesis of myoblasts and skeletal muscle growth. J Nutr Biochem 2023; 115:109277. [PMID: 36739096 DOI: 10.1016/j.jnutbio.2023.109277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Selenomethionine (Se-Met) has many beneficial effects on higher animals and human, and can regulate cellular physiology through distinct signaling pathways. However, the role and molecular mechanism of Se-Met in skeletal muscle growth remains unclear. In this study, we observed the effects of Se-Met on C2C12 myoblasts and skeletal muscle growth of mice, and explored the corresponding molecular mechanism. Se-Met affected proliferation and protein synthesis of C2C12 myoblasts in a hormesis type of relationship, and had an optimal stimulatory effect at 50 µM concentration. Se-Met also affected mTOR, ANXA2, and PKCα phosphorylation in the same manner. ANXA2 knockdown blocked the stimulation of Se-Met on cell proliferation and protein synthesis and inhibition of Se-Met on autophagy of C2C12 myoblasts. Western blotting analysis showed that PI3K inhibition blocked the stimulation of Se-Met on mTOR phosphorylation. ANXA2 knockdown further blocked the stimulation of Se-Met on PI3K and mTOR phosphorylation. Point mutation experiment showed that ANXA2 mediated the stimulation of Se-Met on the PI3K-mTOR signaling through phosphorylation at Ser26. PKCα interacted with ANXA2, and PKCα knockdown blocked the stimulation of Se-Met on ANXA2 phosphorylation at Ser26. Se-Met addition (7.5mg/kg diet, 4 weeks) increased mouse carcass weight, promoted gastrocnemius skeletal muscle growth and ANXA2 and mTOR phosphorylation in this tissue. Collectively, our findings reveal that Se-Met can promote proliferation and protein synthesis of myoblasts and skeletal muscle growth through ANXA2 phosphorylation.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xueying Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xu Cui
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Rui Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| | - Zonghua Ma
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| |
Collapse
|
12
|
Zhu C, Liang S, Zan G, Wang X, Gao C, Yan H, Wang X, Zhou J. Selenomethionine Alleviates DON-Induced Oxidative Stress via Modulating Keap1/Nrf2 Signaling in the Small Intestinal Epithelium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:895-904. [PMID: 36535023 DOI: 10.1021/acs.jafc.2c07885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The small intestinal epithelium is regulated in response to various beneficial or harmful environmental information. Deoxynivalenol (DON), a mycotoxin widely distributed in cereal-based feeds, induces oxidative stress damage in the intestine due to the mitochondrial stress. As a functional nutrient, selenomethionine (Se-Met) is involved in synthesizing several antioxidant enzymes, yet whether it can replenish the intestinal epithelium upon DON exposure remains unknown. Therefore, the in vivo model C57BL/6 mice and the in vitro model MODE-K cells were treated with l-Se-Met and DON alone or in combination to confirm the status of intestinal stem cell (ISC)-driven epithelial regeneration. The results showed that 0.1 mg/kg body weight (BW) Se-Met reinstated the growth performance and integrity of jejunal structure and barrier function in DON-challenged mice. Moreover, Lgr5+ ISCs and PCNA+ mitotic cells in crypts were prominently increased by Se-Met in the presence of DON, concomitant with a significant increase in absorptive cells, goblet cells, and Paneth cells. Simultaneously, crypt-derived jejunal organoids from the Se-Met + DON group exhibited more significant growth advantages ex vivo. Furthermore, Se-Met-stimulated Keap1/Nrf2-dependent antioxidant system (T-AOC and GSH-Px) to inhibit the accumulation of ROS and MDA in the jejunum and serum. Moreover, Se-Met failed to rescue the DON-triggered impairment of cell antioxidant function after Nrf2 perturbation using its specific inhibitor ML385 in MODE-K cells. In conclusion, Se-Met protects ISC-driven intestinal epithelial integrity against DON-induced oxidative stress damage by modulating Keap1/Nrf2 signaling.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Shaojie Liang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Gengxiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiaofan Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
- HenryFok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
13
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Bi Z, Gu X, Xiao Y, Zhou Y, Bao W, Wu S, Wang H. Analysis of the Roles of the ISLR2 Gene in Regulating the Toxicity of Zearalenone Exposure in Porcine Intestinal Epithelial Cells. Toxins (Basel) 2022; 14:toxins14090639. [PMID: 36136577 PMCID: PMC9506288 DOI: 10.3390/toxins14090639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) is one of the mycotoxins that pose high risks for human and animal health, as well as food safety. However, the regulators involved in ZEN cellular toxicity remain largely unknown. Herein, we showed that cell viability of porcine intestinal epithelial cells (IPEC-J2) tended to decrease with increasing doses of ZEN by the cell counting kit-8 assay. Expression of the ISLR2 (immunoglobulin superfamily containing leucine-rich repeat 2) gene in IPEC-J2 cells was significantly downregulated upon ZEN exposure. Furthermore, we found the dose–effect of ZEN on ISLR2 expression. We then overexpressed the ISLR2 gene and observed that overexpression of ISLR2 obviously reduced the effects of ZEN on cell viability, apoptosis rate and oxidative stress level. In addition, ISLR2 overexpression significantly decreased the expression of TNF-α and IFN-α induced by ZEN. Our findings revealed the effects of ZEN on the ISLR2 gene expression and indicated the ISLR2 gene as a novel regulator of ZEN-induced cytotoxicity, which provides potential molecular targets against ZEN toxicity.
Collapse
Affiliation(s)
- Zhenbin Bi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuezhu Gu
- Lvliang Central Animal Husbandry and Veterinary Station, Huaian 211600, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (H.W.)
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (H.W.)
| |
Collapse
|
15
|
Yan R, Wang H, Zhu J, Wang T, Nepovimova E, Long M, Li P, Kuca K, Wu W. Procyanidins inhibit zearalenone-induced apoptosis and oxidative stress of porcine testis cells through activation of Nrf2 signaling pathway. Food Chem Toxicol 2022; 165:113061. [PMID: 35489465 DOI: 10.1016/j.fct.2022.113061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
The mycotoxin zearalenone (ZEA) in food and feed seriously harms human and animal health. How to reduce its toxicity is an important direction of current research on food safety. This study aim to assess the effects of procyanidins (PC) on cell apoptosis caused by ZEA and to clarify the role of Nrf2 in the process. Swine testicle (ST) cells were treated with ZEA (57.5 μmol/L) and/or PC (10 mg/L) for 24 h. Cell viability was detected by CCK-8 assay. Cell apoptosis and the level of ROS were detected by flow cytometry. The expression levels of mRNA and protein was detected by qRT-PCR and western blotting. Our results showed that ZEA reduced the antioxidant capacity of the ST cells, induced the cell apoptosis and inhibited the gene and protein expression of Nrf2 and its downstream genes (ho-1,nqo1), while PC improved the cell antioxidant capacity, reduced the degree of ZEA-induced cell apoptosis and promoted the gene and protein expression of Nrf2 and its downstream genes. However, when the Nrf2 small molecule inhibitor ML385 was added, the ability of PC to inhibit ZEA-induced cell apoptosis and promote the expression of Nrf2 and its downstream genes were decreased. Our results demonstrated that ZEA induced oxidative stress and apoptosis of ST cells, which were alleviated by PC intervention via activating Nrf2 signaling pathway. This finding of this study provided a molecular basis for the clinical application of PC to prevent ZEN-caused reproductive toxicity.
Collapse
Affiliation(s)
- Rong Yan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hanli Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiangning Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tiancheng Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Peng Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Lin X, Zhu L, Gao X, Kong L, Huang Y, Zhao H, Chen Y, Wen L, Li R, Wu J, Yuan Z, Yi J. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113561. [PMID: 35489292 DOI: 10.1016/j.ecoenv.2022.113561] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin, which mainly contaminates grains and has estrogen-like effects on the reproductive system. Betulinic acid (BA), a natural lupane-type pentacyclic triterpene, has anti-oxidative and anti-inflammatory properties. This study aimed to investigate whether BA alleviates ZEA-induced testicular damage and explore the possible mechanism. Here, BA ameliorated testicular damage by mitigating the disordered arrangement of seminiferous tubules, the exfoliation of lumen cells, and the increase of cell apoptosis caused by ZEA. Meanwhile, BA alleviated ZEA-triggered testicular damage by restoring hormone levels and sperm motility, and reconstructing the blood-testis-barrier. Moreover, BA alleviated ZEA-exposed testicular oxidative stress by activating Nrf2 pathway. Furthermore, BA moderated ZEA-evoked testicular inflammation by inhibiting p38/ERK MAPK pathway. Overall, our results revealed that BA has a therapeutic protective effect on ZEA-induced testicular injury and oxidative stress via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation, which provides a viable alternative to alleviate ZEA-induced male reproductive toxicology.
Collapse
Affiliation(s)
- Xing Lin
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinyu Gao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
17
|
Wang H, Xiao Y, Xu C, Cao Y, Jing P, Wu S, Liu J, Bao W. Integrated Metabolomics and Transcriptomics Analyses Reveal Metabolic Mechanisms in Porcine Intestinal Epithelial Cells under Zearalenone Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6561-6572. [PMID: 35583463 DOI: 10.1021/acs.jafc.2c01107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin that frequently occurs in agricultural crops and related products and seriously threatens both animal feed and human food safety. To identify key metabolites and regulators involved in ZEA toxicological processes, we performed metabolomic and transcriptomic analyses of porcine IPEC-J2 intestinal epithelial cells upon ZEA exposure using liquid chromatography-mass spectrometry (LC-MS)/MS and RNA-seq techniques. A total of 325 differential metabolites and 5646 differentially expressed genes were detected. Integrated analyses of metabolomic and transcriptomic data indicated that metabolic processes including lipid metabolism, amino acid metabolism, and carbohydrate metabolism were most affected. Exogenous addition of the key metabolite l-arginine significantly facilitated ZEA metabolism and ameliorated ZEA-induced reactive oxygen species levels and cell apoptosis. Furthermore, l -arginine contributed to the expression of phase II detoxification genes (SULT2B1, GSTA1, GSTM3, and GPX4). l-Arginine addition also increased the protein levels of LC3-II and Beclin 1, and downregulated p62/SQSTM1 levels, indicating its regulatory roles in autophagic flux activation upon ZEA exposure. This study provided global insights into metabolic and transcriptional changes as well as key metabolites and regulators underlying the cellular response to ZEA exposure, and paved the way for the identification of metabolic and molecular targets for biomonitoring and controlling contamination by ZEA.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Jing
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|