1
|
Xu Y, Wang Y, Yang Y, Fang X, Wu L, Hu J, Li J, Mei S. Piezo1: the key regulators in central nervous system diseases. Front Cell Neurosci 2024; 18:1441806. [PMID: 39539343 PMCID: PMC11557416 DOI: 10.3389/fncel.2024.1441806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The occurrence and development of central nervous system (CNS) diseases is a multi-factor and multi-gene pathological process, and their diagnosis and treatment have always posed a serious challenge in the medical field. Therefore, exploring the relevant factors in the pathogenesis of CNS and improving the diagnosis and treatment rates has become an urgent problem. Piezo1 is a recently discovered mechanosensitive ion channel that opens in response to mechanical stimuli. A number of previous studies have shown that the Piezo channel family plays a crucial role in CNS physiology and pathology, especially in diseases related to CNS development and mechanical stimulation. This article comprehensively describes the biological properties of Piezo1, focuses on the potential association between Piezo1 and CNS disorders, and explores the pharmacological roles of Piezo1 agonists and inhibitors in treating CNS disorders.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuheng Wang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
4
|
Pinheiro-Junior EL, Alirahimi E, Peigneur S, Isensee J, Schiffmann S, Erkoc P, Fürst R, Vilcinskas A, Sennoner T, Koludarov I, Hempel BF, Tytgat J, Hucho T, von Reumont BM. Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling. BMC Biol 2024; 22:164. [PMID: 39075558 PMCID: PMC11288129 DOI: 10.1186/s12915-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold. RESULTS Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses. CONCLUSIONS Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Ehsan Alirahimi
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Steve Peigneur
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - Pelin Erkoc
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), Ohlebergsweg 14, 35394, Giessen, Germany
| | - Tobias Sennoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Ivan Koludarov
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Benjamin-Florian Hempel
- Freie Unveristät Berlin, Veterinary Centre for Resistance Research (TZR), Robert-Von-Ostertag Str. 8, 14163, Berlin, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Björn M von Reumont
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Goethe, Frankfurt, Max-Von-Laue-Str 13, 60438, Frankfurt, Germany.
| |
Collapse
|
5
|
Beloborodov E, Iurova E, Fomin A, Saenko Y. Development and Synthesis of Bombesin-Based Radiopharmaceutical Precursors Modified with Knottin. Sovrem Tekhnologii Med 2024; 16:5-14. [PMID: 39539754 PMCID: PMC11556054 DOI: 10.17691/stm2024.16.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 11/16/2024] Open
Abstract
Bombesin receptors on the cell surface are of great interest as a target for targeted cancer therapy. One of the strategies of targeting bombesin receptors involves the use of tropic short peptides. However, the main limitation for the wide application of peptides as drugs is their low stability in vivo due to their sensitivity to extreme conditions of the internal body environment such as temperature and action of enzymes. In our work, a short bombesin peptide, taken as a basis, was modified with a knottin, a toxin with an inhibitor cystine knot, increasing thereby the stability of the short peptide under various conditions. The aim of the investigation is to study the chemical and radiochemical stability of the structure based on the short bombesin peptide and knottin, as well as the ability of the obtained structure to bind to tumor cells. Materials and Methods The work analyzed the chemical and radiochemical stability of the synthesized peptide labeled with a lutetium radioisotope using high-performance liquid chromatography. A fluorescent-labeled peptide, obtained by a solid-phase peptide synthesis, was used to analyze binding to cultures expressing bombesin receptors. Results The analysis has shown increased chemical and radiochemical stability of the knottin-modified peptide, as compared to the commercial analog, and maintenance of a high ability to bind to receptors on the surface of cancer cells. Conclusion The structure created on the basis of a short bombesin peptide and knottin possesses increased stability and retains the ability to bind to cancer cells. All this allows us to consider the creation of these structures as a strategy for fabricating stabilizing scaffolds for short peptides for a peptide-receptor therapy.
Collapse
Affiliation(s)
- E.A. Beloborodov
- Researcher, Laboratory for Peptide Drugs and Vaccines Development, S.P. Kapitsa Research Institute of Technology; Ulyanovsk State University, 42 Leo Tolstoy St., Ulyanovsk, 432017, Russia
| | - E.V. Iurova
- Junior Researcher, Laboratory for Peptide Drugs and Vaccine Development, S.P. Kapitsa Research Institute of Technology; Ulyanovsk State University, 42 Leo Tolstoy St., Ulyanovsk, 432017, Russia
| | - A.N. Fomin
- PhD, Senior Researcher, Laboratory for Peptide Drugs and Vaccines Development, S.P. Kapitsa Research Institute of Technology; Ulyanovsk State University, 42 Leo Tolstoy St., Ulyanovsk, 432017, Russia
| | - Yu.V. Saenko
- DSc, Leading Researcher, Laboratory for Peptide Drugs and Vaccines Development, S.P. Kapitsa Research Institute of Technology; Ulyanovsk State University, 42 Leo Tolstoy St., Ulyanovsk, 432017, Russia
| |
Collapse
|
6
|
Beloborodov E, Iurova E, Sugak D, Rastorgueva E, Pogodina E, Fomin A, Viktorov D, Slesarev S, Saenko Y. Stabilizing Scaffold for Short Peptides Based on Knottins. Curr Cancer Drug Targets 2024; 24:1275-1285. [PMID: 38357956 DOI: 10.2174/0115680096285288240118090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability. OBJECTIVE In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot. METHODS We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy. RESULTS The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity. CONCLUSION Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Evgenii Beloborodov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Elena Iurova
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Dmitrii Sugak
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Eugenia Rastorgueva
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russia
| | - Evgeniya Pogodina
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Aleksandr Fomin
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Denis Viktorov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Sergei Slesarev
- Department of Biology, Ecology and Natural Resources Management, Faculty of Ecology, Ulyanovsk State University, Ulyanovsk, Russia
| | - Yury Saenko
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| |
Collapse
|
7
|
Coulter-Parkhill A, Gault VA, McClean S, Irwin N. Peptides originally derived from Chilobrachys jingzhao tarantula venom possess beneficial effects on pancreatic beta cell health and function. Eur J Pharmacol 2023:175855. [PMID: 37391009 DOI: 10.1016/j.ejphar.2023.175855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Clinical approval of the glucagon-like peptide-1 (GLP-1) mimetic exenatide for the treatment of type 2 diabetes highlights the therapeutic effectiveness of venom-derived peptides. In the present study, we examined and characterised the glucose-lowering potential of synthetic Jingzhaotoxin IX and Jingzhaotoxin XI peptides, which were originally isolated from the venom of the Chinese earth tarantula Chilobrachys jingzhao. Following confirmation of lack of beta-cell toxicity of synthetic peptides, assessment of enzymatic stability and effects on in vitro beta-cell function were studied, alongside putative mechanisms. Glucose homeostatic and appetite suppressive actions of Jingzhaotoxin IX and Jingzhaotoxin XI alone, or in combination with exenatide, were then assessed in normal overnight fasted C57BL/6 mice. Synthetic Jingzhaotoxin peptides were non-toxic and exhibited a decrease in mass of 6 Da in Krebs-Ringer bicarbonate buffer suggesting inhibitor cysteine knot (ICK)-like formation, but interestingly were liable to plasma enzyme degradation. The Jingzhaotoxin peptides evoked prominent insulin secretion from BRIN BD11 beta-cells, with activity somewhat characteristic of Kv2.1 channel binding. In addition, Jingzhaotoxin peptides enhanced beta-cell proliferation and provided significant protection against cytokine-induced apoptosis. When injected co-jointly with glucose, the Jingzhaotoxin peptides slightly decreased blood-glucose levels but had no effect on appetite in overnight fasted mice. Whilst the Jingzhaotoxin peptides did not enhance exenatide-induced benefits on glucose homeostasis, they augmented exenatide-mediated suppression of appetite. Taken together, these data highlight the therapeutic potential of tarantula venom-derived peptides, such as Jingzhaotoxin IX and Jingzhaotoxin XI either alone or in combination with exenatide, for diabetes and related obesity.
Collapse
Affiliation(s)
- A Coulter-Parkhill
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK
| | - S McClean
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK
| | - N Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
8
|
Coulter-Parkhill A, Dobbin S, Tanday N, Gault VA, McClean S, Irwin N. A novel peptide isolated from Aphonopelma chalcodes tarantula venom with benefits on pancreatic islet function and appetite control. Biochem Pharmacol 2023; 212:115544. [PMID: 37044298 DOI: 10.1016/j.bcp.2023.115544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Proof-of-concept for therapeutic application of venom-derived compounds in diabetes is exemplified by the incretin mimetic, exenatide, originally extracted from the saliva of the venomous Heloderma suspectum lizard. In this regard, we have isolated and sequenced a novel 28 amino acid peptide named Δ-theraphotoxin-Ac1 (Δ-TRTX-AC1) from venom of the Mexican Blond tarantula spider Aphonopelma chalcodes, with potential therapeutic benefits for diabetes. Following confirmation of the structure and safety profile of the synthetic peptide, assessment of enzymatic stability and effects of Δ-TRTX-AC1 on in vitro beta-cell function were studied, alongside potential mechanisms. Glucose homeostatic and satiety actions of Δ-TRTX-AC1 alone, and in combination with exenatide, were then assessed in C57BL/6 mice. Synthetic Δ-TRTX-AC1 was shown to adopt a characteristic inhibitor cysteine knot (ICK)-like structure and was non-toxic to beta-cells. Δ-TRTX-AC1 evoked glucose-dependent insulin secretion from BRIN BD11 cells with bioactivity confirmed in murine islets. Insulin secretory potency was established to be dependent on KATP and Ca2+ channel beta-cell signalling. In addition, Δ-TRTX-AC1 enhanced beta-cell proliferation and provided significant protection against cytokine-induced apoptosis. When injected co-jointly with glucose in mice at a dose of 250 nmol/kg, Δ-TRTX-AC1 decreased blood-glucose levels and evoked a significant satiating effect. Moreover, whilst Δ-TRTX-AC1 did not enhance exenatide induced benefits on glucose homeostasis, the peptide significantly augmented exenatide mediated suppression of appetite. Together these data highlight the therapeutic potential of tarantula spider venom-derived peptides, such as Δ-TRTX-Ac1, for diabetes and related obesity.
Collapse
Affiliation(s)
| | - Swm Dobbin
- Ulster University, Coleraine, Northern Ireland, UK
| | - N Tanday
- Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- Ulster University, Coleraine, Northern Ireland, UK
| | - S McClean
- Ulster University, Coleraine, Northern Ireland, UK
| | - N Irwin
- Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
9
|
Rodríguez JA, Barredo-Vacchelli GR, Iglesias-García LC, Birocco AM, Blachman A, Calabrese GC, Acosta G, Albericio F, Camperi SA. Design and Synthesis of Peptides from Phoneutria nigriventer δ-Ctenitoxin-Pn2a for Antivenom Production. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
10
|
Hwang SM, Jo YY, Cohen CF, Kim YH, Berta T, Park CK. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Int J Mol Sci 2022; 23:ijms23105772. [PMID: 35628583 PMCID: PMC9147560 DOI: 10.3390/ijms23105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Youn-Yi Jo
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon 21565, Korea;
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
| | - Yong-Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
- Correspondence: (T.B.); (C.-K.P.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
- Correspondence: (T.B.); (C.-K.P.)
| |
Collapse
|
11
|
Toxinologic and Pharmacological Investigation of Venomous Arthropods. Toxins (Basel) 2022; 14:toxins14040283. [PMID: 35448892 PMCID: PMC9033086 DOI: 10.3390/toxins14040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
|