1
|
Ahmad MS, Alanazi YA, Alrohaimi Y, Shaik RA, Alrashidi S, Al-Ghasham YA, Alkhalifah YS, Ahmad RK. Infant nutrition at risk: a global systematic review of ochratoxin A in human breast milk-human health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1611-1624. [PMID: 39292700 DOI: 10.1080/19440049.2024.2401976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Human breast milk is the optimal source of nutrition for newborns, but the potential transfer of contaminants like mycotoxins, particularly ochratoxin A (OTA), from maternal blood to milk remains a concern. This systematic review aims to provide a comprehensive analysis of global OTA levels in human breast milk and assess the associated health risks. We conducted a thorough search of scientific databases, including Web of Science, ScienceDirect, Scopus, Google Scholar and PubMed, using keywords related to OTA in human breast milk. A total of 39 studies met the inclusion criteria for this review. OTA levels compared to limits, estimated infant intake at various ages and health risks assessed using Margin of Exposures (MOEs) and Hazard quotient (HQ). Our findings reveal the widespread presence of OTA in breast milk across different regions, with notably higher levels detected in Africa compared to Asia, South America and Europe. The higher concentrations observed in warmer, humid climates suggest that environmental factors significantly influence OTA contamination. Mature breast milk samples generally exhibited greater OTA exposure. The neoplastic and non-neoplastic effects demonstrate generally low risks globally. The regional differences in OTA levels and associated health risk assessments underscore the need for continued research into the health impacts of OTA exposure in infants. This includes further investigation into multiple sources of exposure, such as infant formula, within the broader context of the exposome framework.
Collapse
Affiliation(s)
- Mohammad Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Abud Alanazi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Alrohaimi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Sami Alrashidi
- Department of Paediatrics, Maternity and Children Hospital, Qassim, Saudi Arabia
| | - Yazeed A Al-Ghasham
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yasir S Alkhalifah
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ritu Kumar Ahmad
- Department of Applied Medical Science, Buraydah Private Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Arteshi Y, Lima D, Tittlemier SA, Kuss S. Rapid and inexpensive voltammetric detection of ochratoxin A in wheat matrices. Bioelectrochemistry 2023; 152:108451. [PMID: 37150089 DOI: 10.1016/j.bioelechem.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
Produced as toxic metabolites by fungi, mycotoxins, such as ochratoxin A (OTA), contaminate grain and animal feed and cause great economic losses. Herein, we report the fabrication of an electrochemical sensor consisting of an inexpensive and label-free carbon black-graphite paste electrode (CB-G-CPE), which was fully optimized to detect OTA in durum wheat matrices using differential pulse voltammetry (DPV). The effect of carbon paste composition, electrolyte pH and DPV parameters were studied to determine the optimum conditions for the electroanalytical determination of OTA. Full factorial and central composite experimental designs (FFD and CCD) were used to optimize DPV parameters, namely pulse width, pulse height, step height and step time. The developed electrochemical sensor successfully detected OTA with detection and quantification limits equal to 57.2 nM (0.023 µg mL-1) and 190.6 nM (0.077 µg mL-1), respectively. The accuracy and precision of the presented CB-G-CPE was used to successfully quantify OTA in real wheat matrices. This study presents an inexpensive and user-friendly method with potential applications in grain quality control.
Collapse
Affiliation(s)
- Yaser Arteshi
- Department of Chemistry, University of Manitoba, 144, Dysart Road, R3T 2N2 Winnipeg, MB, Canada.
| | - Dhésmon Lima
- Department of Chemistry, University of Manitoba, 144, Dysart Road, R3T 2N2 Winnipeg, MB, Canada.
| | | | - Sabine Kuss
- Department of Chemistry, University of Manitoba, 144, Dysart Road, R3T 2N2 Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Wang L, Wang Q, Wang S, Cai R, Yuan Y, Yue T, Wang Z. Bio-control on the contamination of Ochratoxin A in food: Current research and future prospects. Curr Res Food Sci 2022; 5:1539-1549. [PMID: 36161229 PMCID: PMC9489538 DOI: 10.1016/j.crfs.2022.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Ochratoxin A (OTA) is a secondary metabolite of several fungi and widely exists in various species of foods. The establishment of effective methods for OTA reduction is a key measure to ensure food processing and human health. This article reviews the current research of OTA reduction by biological approaches, summarizes the characteristics and efficiency of them, and evaluates the transformation pathways and metabolites safety of each degradation technology. The shortcomings of various methods are pointed out and future prospects are also proposed. Biological methods are the most promising approaches for OTA control. The defect of them is the long processing time and the growth of microbial cells may affect the product quality. Therefore, the control of OTA contamination should be conducted according to the food processing and their product types. Besides, it is significant for the exploitation of new strains, enzyme and novel adsorbents.
Collapse
Affiliation(s)
- Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Qi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Liu WC, Pushparaj K, Meyyazhagan A, Arumugam VA, Pappusamy M, Bhotla HK, Baskaran R, Issara U, Balasubramanian B, Khaneghah AM. Ochratoxin A as alarming health in livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon 2022; 213:59-75. [PMID: 35452686 DOI: 10.1016/j.toxicon.2022.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite produced by Aspergillus and Penicillium fungi commonly found in raw plant sources and other feeds. This review comprises an extensive evaluation of the origin and proprieties of OTA, toxicokinetics, biotransformation, and toxicodynamics of ochratoxins. In in vitro and in vivo studies, the compatibility of OTA with oxidative stress is observed through the production of free radicals, resulting in genotoxicity and carcinogenicity. The OTA leads to nephrotoxicity as the chief target organ is the kidney. Other OTA excretion and absorption rates are observed, and the routes of elimination include faeces, urine, and breast milk. The alternations in the Phe moiety of OTA are the precursor for the amino acid alternation, bringing about Phe-hydroxylase and Phe-tRNA synthase, resulting in the complete dysfunction of cellular metabolism. Biodetoxification using specific microorganisms decreased the DNA damage, lipid peroxidation, and cytotoxicity. This review addressed the ability of antioxidants and the dietary components as prophylactic measures to encounter toxicity and demonstrated their capability to counteract the chronic exposure through supplementation as feed additives.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappusamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | | | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|