1
|
Fang C(G, James B, Williams M, Bachler A, Tay WT, Walsh T, Frese M. Cry1 resistance in a CRISPR/Cas9-mediated HaCad1 gene knockout strain of the Australian cotton bollworm Helicoverpa armigera conferta (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2025; 81:959-965. [PMID: 39544011 PMCID: PMC11716338 DOI: 10.1002/ps.8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Helicoverpa armigera is a highly polyphagous species that causes huge losses to agricultural and horticultural crops worldwide. In the cotton industry, H. armigera, including the Australian subspecies Helicoverpa armigera conferta, is largely managed using genetically modified crops that express insecticidal toxins, such as Cry1Ac. Resistance to Cry1 proteins occurs and, in some cases, is mediated by changes to HaCad1, a gene that encodes the midgut protein cadherin. Around the world, numerous resistance-associated polymorphisms have been identified in the HaCad1 gene of H. armigera, but Cry1Ac resistance is rare in the Australian subspecies. We used CRISPR/Cas9 to disrupt the cadherin gene in H. armigera conferta and characterised the resulting phenotype with bioassays and transcriptomics. RESULTS Compared to the parental strain, the newly generated HaCad1 knockout strain is 44-fold and 16-fold more resistant to Cry1Ac and Cry1A.105, respectively, while wild-type and knockout insects were equally insensitive to Cry1F. CONCLUSION The disruption of the HaCad1 gene causes Cry1Ac resistance in Australian H. armigera conferta. However, Cry1Ac resistance remains rare in Australian field populations suggesting that Australia's approach to pest management in cotton has prevented widespread Cry1Ac resistance. © 2024 CSIRO. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Cao (Grace) Fang
- Faculty of Science and TechnologyUniversity of CanberraCanberraAustralia
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| | - Bill James
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| | - Michelle Williams
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| | - Andy Bachler
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Wee Tek Tay
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
- Department of Applied BioSciencesMacquarie UniversitySydneyAustralia
| | - Tom Walsh
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
- Department of Applied BioSciencesMacquarie UniversitySydneyAustralia
| | - Michael Frese
- Faculty of Science and TechnologyUniversity of CanberraCanberraAustralia
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| |
Collapse
|
2
|
Wang L, Xu M, He L, Wei W, Xu D, Cong S, Liu K, Wan P. Mutation in PgABCC2 confers low-level resistance to Cry1Ac in pink bollworm. PEST MANAGEMENT SCIENCE 2024; 80:3326-3333. [PMID: 38380740 DOI: 10.1002/ps.8036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND With the increasing incidence of pest resistance to transgenic crops producing Bacillus thuringiensis (Bt) proteins in the field, elucidating the molecular basis of resistance is important for monitoring, delaying and countering pest resistance. Previous work revealed that mutation or down-regulated expression of the cadherin gene (PgCad1) is associated with pink bollworm (Pectinophora gossypiella) resistance to Cry1Ac, and 20 mutant PgCad1 alleles (r1-r20) were characterized. Here, we tested the hypothesis that the ABC transporter PgABCC2 is a functional receptor for the Bt toxin Cry1Ac and that a mutation is associated with resistance. RESULTS We identified and characterized the first resistance allele (rC2) of PgABCC2 in the laboratory-selected Cry1Ac-resistant strain AQ-C2 of pink bollworm. The rC2 allele had a one-base deletion in exon20, resulting in a frameshift and the introduction of a premature stop codon. This resulting PgABCC2 protein had a truncated C-terminus, including the loss of the NBD2 domain. AQ-C2 exhibited 20.2-fold greater resistance to Cry1Ac than the susceptible strain, and its inheritance of Cry1Ac resistance was recessive and genetically linked to PgABCC2. When produced in cultured insect cells, recombinant wild-type and rC2 mutant PgABCC2 proteins localized within the cell plasma membrane, although substantial cytoplasmic retention was also observed for the mutant protein, while the mutant PgABCC2 caused a 13.9-fold decrease in Cry1Ac toxicity versus the wild-type PgABCC2. CONCLUSIONS PgABCC2 is a functional receptor of Cry1Ac and the loss of its carboxyl terminus (including its NBD2 domain) confers low-level resistance to Cry1Ac in both larvae and in cultured cells. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Min Xu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lu He
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wei Wei
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China
| | - Dong Xu
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shengbo Cong
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Peng Wan
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
3
|
Cao SK, Du XX, Chen G, Zeng AP, Yu H. Relative activity of 15 bacterial strains against the larvae of Helicoverpa armigera, Spodoptera exigua, and Spodoptera litura (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1505-1517. [PMID: 37499044 DOI: 10.1093/jee/toad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Crystal toxins produced by different strains of entomopathogenic Bacillus thuringiensis (Bt) have been characterized and widely applied as commercial biological pesticides owing to their excellent insecticidal properties. This study aimed to identify novel bacterial strains effective in controlling Spodoptera exigua Hübner, Helicoverpa armigera Hübner, and Spodoptera litura Fabricius. Fifteen culturable bacterial strains were isolated from 60 dead larvae (H. armigera and S. exigua) collected in the field. The biochemical characteristics and 16S rRNA sequences of these strains indicated that one strain (B7) was Lysinibacillus sp., 12 strains (B1, B3, B4, B5, B6, B8, P2, P3, P4, P5, P6, and DW) were Bt kurstaki, and P2-2 and B2 were Bacillus velezensis subsp. Laboratory bioassays indicated that strains B3, P6, B6, and P4 showed high toxicity to second-instar larvae of S. exigua, with LC50 values of 5.11, 6.74, 205.82, and 595.93 µg/ml, respectively; while the strains P5, B5, B6, and P6, were the most efficient against second-instar larvae of H. armigera with LC50 values of 725.82, 11,022.72, 1,282.90, 2,005.28, respectively, and strains DW, P3, P2, and B4 had high insecticidal activity against second-instar larvae of S. litura with LC50 values of 576.69, 1,660.96, 6,309.42, and 5,486.10 µg/ml, respectively. In conclusion, several Bt kurstaki strains with good toxicity potential were isolated and identified in this study. These strains are expected to be useful for biointensive integrated pest management programs to reduce the use of synthetic insecticides.
Collapse
Affiliation(s)
- Sheng-Kai Cao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xing-Xing Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ai-Ping Zeng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
4
|
Xiong L, Liu Z, Li J, Yao S, Li Z, Chen X, Shen L, Zhang Z, Li Y, Hou Q, Zhang Y, You M, Yuchi Z, You S. Analysis of the Effect of Plutella xylostella Polycalin and ABCC2 Transporter on Cry1Ac Susceptibility by CRISPR/Cas9-Mediated Knockout. Toxins (Basel) 2023; 15:toxins15040273. [PMID: 37104211 PMCID: PMC10145054 DOI: 10.3390/toxins15040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Many insects, including the Plutella xylostella (L.), have developed varying degrees of resistance to many insecticides, including Bacillus thuringiensis (Bt) toxins, the bioinsecticides derived from Bt. The polycalin protein is one of the potential receptors for Bt toxins, and previous studies have confirmed that the Cry1Ac toxin can bind to the polycalin protein of P. xylostella, but whether polycalin is associated with the resistance of Bt toxins remains controversial. In this study, we compared the midgut of larvae from Cry1Ac-susceptible and -resistant strains, and found that the expression of the Pxpolycalin gene was largely reduced in the midgut of the resistant strains. Moreover, the spatial and temporal expression patterns of Pxpolycalin showed that it was mainly expressed in the larval stage and midgut tissue. However, genetic linkage experiments showed that the Pxpolycalin gene and its transcript level were not linked to Cry1Ac resistance, whereas both the PxABCC2 gene and its transcript levels were linked to Cry1Ac resistance. The larvae fed on a diet containing the Cry1Ac toxin showed no significant change in the expression of the Pxpolycalin gene in a short term. Furthermore, the knockout of polycalin and ATP-binding cassette transporter subfamily C2 (ABCC2) genes separately by CRISPR/Cas9 technology resulted in resistance to decreased susceptibility to Cry1Ac toxin. Our results provide new insights into the potential role of polycalin and ABCC2 proteins in Cry1Ac resistance and the mechanism underlying the resistance of insects to Bt toxins.
Collapse
Affiliation(s)
- Lei Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zhaoxia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jingge Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Shuyuan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zeyun Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xuanhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Lingling Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zhen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Yongbin Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qing Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Yuhang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
5
|
Fabrick JA, Li X, Carrière Y, Tabashnik BE. Molecular Genetic Basis of Lab- and Field-Selected Bt Resistance in Pink Bollworm. INSECTS 2023; 14:insects14020201. [PMID: 36835770 PMCID: PMC9959750 DOI: 10.3390/insects14020201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 05/17/2023]
Abstract
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) control some important insect pests. However, evolution of resistance by pests reduces the efficacy of Bt crops. Here we review resistance to Bt cotton in the pink bollworm, Pectinophora gossypiella, one of the world's most damaging pests of cotton. Field outcomes with Bt cotton and pink bollworm during the past quarter century differ markedly among the world's top three cotton-producing countries: practical resistance in India, sustained susceptibility in China, and eradication of this invasive lepidopteran pest from the United States achieved with Bt cotton and other tactics. We compared the molecular genetic basis of pink bollworm resistance between lab-selected strains from the U.S. and China and field-selected populations from India for two Bt proteins (Cry1Ac and Cry2Ab) produced in widely adopted Bt cotton. Both lab- and field-selected resistance are associated with mutations affecting the cadherin protein PgCad1 for Cry1Ac and the ATP-binding cassette transporter protein PgABCA2 for Cry2Ab. The results imply lab selection is useful for identifying genes important in field-evolved resistance to Bt crops, but not necessarily the specific mutations in those genes. The results also suggest that differences in management practices, rather than genetic constraints, caused the strikingly different outcomes among countries.
Collapse
Affiliation(s)
- Jeffrey A. Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
- Correspondence:
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
6
|
Quan Y, Wu K. Managing Practical Resistance of Lepidopteran Pests to Bt Cotton in China. INSECTS 2023; 14:179. [PMID: 36835748 PMCID: PMC9965927 DOI: 10.3390/insects14020179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
China is one of the major cotton producers globally with small farmers. Lepidopteran pests have always been the main factor affecting cotton production. To reduce the occurrence of and damage caused by lepidopteran pests, China has employed a pest control method focused on planting Bt (Cry1Ac) cotton since 1997. Chinese resistance management tactics for the main target pests, the cotton bollworm and pink bollworm, were also implemented. For polyphagous (multiple hosts) and migratory pests such as the cotton bollworm (Helicoverpa armigera), the "natural refuge" strategy, consisting of non-Bt crops such as corn, soybean, vegetables, peanuts, and other host crops, was adopted in the Yellow River Region (YRR) and Northwest Region (NR). For a single host and weak migration ability pest, such as the pink bollworm (Pectinophora gossypiella), the seed mix refuge strategy yields a random mixture within fields of 25% non-Bt cotton by sowing second-generation (F2) seeds. According to field monitoring results for more than 20 years in China, practical resistance (Bt cotton failure) of target pests was avoided, and there were no cases of Bt (Cry1Ac) failure of pest control in cotton production. This indicated that this Chinese resistance management strategy was very successful. The Chinese government has decided to commercialize Bt corn, which will inevitably reduce the role of natural refuges; therefore, this paper also discusses adjustments and future directions of cotton pest resistance management strategies.
Collapse
Affiliation(s)
- Yudong Quan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|