1
|
Yuan XL, Zhao DL, Zhang ZF, Ji GX, Chen D, Zhang P. Characterization of a New Insecticidal Benzothiazole Derivative from Aspergillus sp. 1022LEF against the Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27939-27952. [PMID: 39508288 DOI: 10.1021/acs.jafc.4c07702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The fall armyworm Spodoptera frugiperda is considered one of the most destructive crop pests, posing a significant threat to food and crop security. In this study, we conducted a chemical investigation of the endophytic fungus Aspergillus sp. 1022LEF, leading to the identification of a previously unreported benzothiazole derivative, 6-(2-hydroxyethyl)benzo[d]thiazol-4-ol (HBT). Its structure was unambiguously characterized using extensive spectroscopic methods, including 1D and 2D NMR data, HRESIMS data, and single-crystal X-ray diffraction analysis. The insecticidal assay revealed that HBT possessed remarkable activity against S. frugiperda with an LC50 value of 0.24 mg/mL. Further transcriptomic and proteomic analyses revealed that HBT induced mortality in S. frugiperda by impeding DNA replication and protein synthesis, influencing mitochondria-mediated autophagy, and perturbing hormone synthesis, thereby disrupting the fundamental biosynthetic processes. HBT demonstrated high activity in controlling S. frugiperda, which highlighted its potential use as a lead in the development of biopesticides.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Gui-Xia Ji
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Dan Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| |
Collapse
|
2
|
Li J, Guo Q, Yang B, Zhou J. Combined Analysis of Metabolomics and Transcriptome Revealed the Effect of Bacillus thuringiensis on the 5th Instar Larvae of Dendrolimus kikuchii Matsumura. Int J Mol Sci 2024; 25:11823. [PMID: 39519375 PMCID: PMC11547106 DOI: 10.3390/ijms252111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Dendrolimus kikuchii Matsumura (D. kikuchii) is a serious pest of coniferous trees. Bacillus thuringiensis (Bt) has been widely studied and applied as a biological control agent for a variety of pests. Here, we found that the mortality rate of D. kikuchii larvae after being fed Bt reached 95.33% at 24 h; the midgut membrane tissue was ulcerated and liquefied, the MDA content in the midgut tissue decreased and the SOD, CAT and GPx enzyme activities increased, indicating that Bt has toxic effects on D. kikuchii larvae. In addition, transmission electron microscopy showed that Bt infection caused severe deformation of the nucleus of the midgut tissue of D. kikuchii larvae, vacuoles in the nucleolus, swelling and shedding of microvilli, severe degradation of mitochondria and endoplasmic reticulum and decreased number. Surprisingly, metabolomics and transcriptome association analysis revealed that four metabolic-related signaling pathways, Nicotinate and nicotinamide metabolism, Longevity regulating pathway-worm, Vitamin digestion and absorption and Lysine degradation, were co-annotated in larvae. More surprisingly, Niacinamide was a common differential metabolite in the first three signaling pathways, and both Niacinamide and L-2-Aminoadipic acid were reduced. The differentially expressed genes involved in the four signaling pathways, including NNT, ALDH, PNLIP, SETMAR, GST and RNASEK, were significantly down-regulated, but only SLC23A1 gene expression was up-regulated. Our results illustrate the effects of Bt on the 5th instar larvae of D. kikuchii at the tissue, cell and molecular levels, and provide theoretical support for the study of Bt as a new biological control agent for D. kikuchii.
Collapse
Affiliation(s)
- Jinyan Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
| | - Qiang Guo
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jielong Zhou
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Pogačar K, Grundner M, Žigon P, Coll A, Panevska A, Lukan T, Petek M, Razinger J, Gruden K, Sepčić K. Protein complexes from edible mushrooms as a sustainable potato protection against coleopteran pests. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2518-2529. [PMID: 38733093 PMCID: PMC11331795 DOI: 10.1111/pbi.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024]
Abstract
Protein complexes from edible oyster mushrooms (Pleurotus sp.) composed of pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) exert toxicity in feeding tests against Colorado potato beetle (CPB) larvae, acting through the interaction with insect-specific membrane sphingolipid. Here we present a new strategy for crop protection, based on in planta production of PlyA2/PlyB protein complexes, and we exemplify this strategy in construction of transgenic potato plants of cv Désirée. The transgenics in which PlyA2 was directed to the vacuole and PlyB to the endoplasmic reticulum are effectively protected from infestation by CPB larvae without impacting plant performance. These transgenic plants showed a pronounced effect on larval feeding rate, the larvae feeding on transgenic plants being on average five to six folds lighter than larvae feeding on controls. Further, only a fraction (11%-37%) of the larvae that fed on transgenic potato plants completed their life cycle and developed into adult beetles. Moreover, gene expression analysis of CPB larvae exposed to PlyA2/PlyB complexes revealed the response indicative of a general stress status of larvae and no evidence of possibility of developing resistance due to the functional inactivation of PlyA2/PlyB sphingolipid receptors.
Collapse
Affiliation(s)
- Karmen Pogačar
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Maja Grundner
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Primož Žigon
- Plant Protection DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia
| | - Anna Coll
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Anastasija Panevska
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Jaka Razinger
- Plant Protection DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
4
|
Jiang K, Gao X. Current advances on Vip3 highlight the promising potential of bacterial insecticidal proteins. Trends Microbiol 2024; 32:732-735. [PMID: 38902178 DOI: 10.1016/j.tim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Biological control, based on microbial insecticidal proteins, has become an important strategy for sustainable pest management. This forum discusses recent advancements and research strategies of the bacterial insecticidal protein vegetative insecticidal protein 3 (Vip3), aiming to provide valuable insights for future investigations on Vip3 and other insecticidal proteins.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Lv T, Zhang Y, Liu J, Kang Q, Liu L. Multi-omics integration for both single-cell and spatially resolved data based on dual-path graph attention auto-encoder. Brief Bioinform 2024; 25:bbae450. [PMID: 39293805 PMCID: PMC11410375 DOI: 10.1093/bib/bbae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Single-cell multi-omics integration enables joint analysis at the single-cell level of resolution to provide more accurate understanding of complex biological systems, while spatial multi-omics integration is benefit to the exploration of cell spatial heterogeneity to facilitate more comprehensive downstream analyses. Existing methods are mainly designed for single-cell multi-omics data with little consideration of spatial information and still have room for performance improvement. A reliable multi-omics integration method designed for both single-cell and spatially resolved data is necessary and significant. We propose a multi-omics integration method based on dual-path graph attention auto-encoder (SSGATE). It can construct the neighborhood graphs based on single-cell expression profiles or spatial coordinates, enabling it to process single-cell data and utilize spatial information from spatially resolved data. It can also perform self-supervised learning for integration through the graph attention auto-encoders from two paths. SSGATE is applied to integration of transcriptomics and proteomics, including single-cell and spatially resolved data of various tissues from different sequencing technologies. SSGATE shows better performance and stronger robustness than competitive methods and facilitates downstream analysis.
Collapse
Affiliation(s)
- Tongxuan Lv
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yong Zhang
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Junlin Liu
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Qiang Kang
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| | - Lin Liu
- BGI Research, No. 9, Yunhua Road, Yantian District, Shenzhen 518083, China
| |
Collapse
|
6
|
Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proc Natl Acad Sci U S A 2023; 120:e2306932120. [PMID: 37874855 PMCID: PMC10622909 DOI: 10.1073/pnas.2306932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wenhui Wang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, JenaD-07745, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| |
Collapse
|
7
|
Huang K, He H, Wang S, Zhang M, Chen X, Deng Z, Ni X, Li X. Sequential and Simultaneous Interactions of Plant Allelochemical Flavone, Bt Toxin Vip3A, and Insecticide Emamectin Benzoate in Spodoptera frugiperda. INSECTS 2023; 14:736. [PMID: 37754704 PMCID: PMC10532070 DOI: 10.3390/insects14090736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Target pests of genetically engineered crops producing both defensive allelochemicals and Bacillus thuringiensis (Bt) toxins often sequentially or simultaneously uptake allelochemicals, Bt toxins, and/or insecticides. How the three types of toxins interact to kill pests remains underexplored. Here we investigated the interactions of Bt toxin Vip3A, plant allelochemical flavone, and insecticide emamectin benzoate in Spodoptera frugiperda. Simultaneous administration of flavone LC25 + Vip3A LC25, emamectin benzoate LC25 + Vip3A LC25, and flavone LC15 + emamectin benzoate LC15 + Vip3A LC15 but not flavone LC25 + emamectin LC25 yielded a mortality significantly higher than their expected additive mortality (EAM). One-day pre-exposure to one toxin at LC5 followed by six-day exposure to the same toxin at LC5 plus another toxin at LC50 showed that the mortality of flavone LC5 + Vip3A LC50, emamectin benzoate LC5 + Vip3A LC50, and Vip3A LC5 + emamectin benzoate LC50 were significantly higher than their EAM, while that of flavone LC5 + emamectin benzoate LC50 was significantly lower than their EAM. No significant difference existed among the mortalities of Vip3A LC5 + flavone LC50, emamectin benzoate LC5 + flavone LC50, and their EAMs. The results suggest that the interactions of the three toxins are largely synergistic (inductive) or additive, depending on their combinations and doses.
Collapse
Affiliation(s)
- Kaiyuan Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Haibo He
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Shan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuewei Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (H.H.); (S.W.); (M.Z.); (X.C.)
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA 31793, USA;
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Van Lommel J, Holtof M, Tilleman L, Cools D, Vansteenkiste S, Polgun D, Verdonck R, Van Nieuwerburgh F, Vanden Broeck J. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust. Front Physiol 2023; 14:1232545. [PMID: 37692997 PMCID: PMC10484617 DOI: 10.3389/fphys.2023.1232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
The digestive tract constitutes an important interface between an animal's internal and external environment. In insects, available gut transcriptome studies are mostly exploratory or look at changes upon infection or upon exposure to xenobiotics, mainly performed in species belonging to holometabolan orders, such as Diptera, Lepidoptera or Coleoptera. By contrast, studies focusing on gene expression changes after food uptake and during digestion are underrepresented. We have therefore compared the gene expression profiles in the midgut of the desert locust, Schistocerca gregaria, between three different time points after feeding, i.e., 24 h (no active digestion), 10 min (the initial stage of feeding), and 2 h (active food digestion). The observed gene expression profiles were consistent with the polyphagous herbivorous lifestyle of this hemimetabolan (orthopteran) species. Our study reveals the upregulation of 576 genes 2 h post-feeding. These are mostly predicted to be associated with digestive physiology, such as genes encoding putative digestive enzymes or nutrient transporters, as well as genes putatively involved in immunity or in xenobiotic metabolism. The 10 min time point represented an intermediate condition, suggesting that the S. gregaria midgut can react rapidly at the transcriptional level to the presence of food. Additionally, our study demonstrated the critical importance of two transcripts that exhibited a significant upregulation 2 h post-feeding: the vacuolar-type H(+)-ATPase and the sterol transporter Niemann-Pick 1b protein, which upon RNAi-induced knockdown resulted in a marked increase in mortality. Their vital role and accessibility via the midgut lumen may make the encoded proteins promising insecticidal target candidates, considering that the desert locust is infamous for its huge migrating swarms that can devastate the agricultural production in large areas of Northern Africa, the Middle East, and South Asia. In conclusion, the transcriptome datasets presented here will provide a useful and promising resource for studying the midgut physiology of S. gregaria, a socio-economically important pest species.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | | | - Dorien Cools
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Seppe Vansteenkiste
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Daria Polgun
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Meng X, Guan D, Zhang N, Jiang H, Jiang C, Ge H, Wei J, Wang J, Qian K. Comparative phosphoproteomics analysis provides insights into the responses of Chilo suppressalis to sublethal chlorantraniliprole exposure. PEST MANAGEMENT SCIENCE 2023; 79:2338-2352. [PMID: 36797212 DOI: 10.1002/ps.7411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 02/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Sublethal exposure to insecticides causes changes in insect behaviors and physiologies including feeding, mobility, communication, hormone homeostasis, development and fecundity, however, the underlying molecular mechanisms were largely unclear. Our previous studies revealed that sublethal chlorantraniliprole exposure disturbed the hormone homeostasis, reduced the weight and longevity and prolonged the developmental duration of Chilo suppressalis. In the present study, the potential phosphorylation modification regulation mechanisms in C. suppressalis in response to sublethal chlorantraniliprole exposure were explored using comparative and quantitative phosphoproteomics. RESULTS A total of 2640 phosphopeptides belonging to 1144 phosphoproteins were identified, among which 446 phosphopeptides derived from 303 unique phosphoproteins were differentially phosphorylated between the chlorantraniliprole-treated and control larvae. The phosphorylation levels of differentially phosphorylated phosphopeptides were further validated using parallel reaction monitoring (PRM). Functional classification and protein-protein interaction of the differentially phosphorylated proteins (DPPs) were analyzed. Generalized analysis of the DPPs and the differentially expressed genes (DEGs) identified in our previous study showed that sublethal chlorantraniliprole exposure significantly changed the transcription and phosphorylation levels of genes/proteins associated with carbohydrate and lipid metabolism, cytoskeleton, signal transduction, transcription, translation and post-translational modification, leading to the dysfunctions of energy metabolism, transcription regulation, protein synthesis and modification, and signal transduction in C. suppressalis. Further analysis of the phosphorylation motifs in DPPs revealed that the MAPKs, CDKs, CaMK II, PKA, PKC and CK II protein kinases might be directly responsible for the phosphoproteomics response of C. suppressalis to chlorantraniliprole treatment. CONCLUSION Our results provide abundant phosphorylation information for characterizing the protein modification in insects, and also provide valuable insights into the molecular mechanisms of insect post-translational modifications in response to sublethal insecticide exposure. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chengyun Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Deng Z, Zhang Y, Fang L, Zhang M, Wang L, Ni X, Li X. Identification of the Flavone-Inducible Counter-Defense Genes and Their cis-Elements in Helicoverpa armigera. Toxins (Basel) 2023; 15:365. [PMID: 37368666 DOI: 10.3390/toxins15060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Flavone is widely found in plants and plays an important role in plant defense against pests. Many pests, such as Helicoverpa armigera, use flavone as a cue to upregulate counter-defense genes for detoxification of flavone. Yet the spectrum of the flavone-inducible genes and their linked cis-regulatory elements remains unclear. In this study, 48 differentially expressed genes (DEGs) were found by RNA-seq. These DEGs were mainly concentrated in the retinol metabolism and drug metabolism-cytochrome P450 pathways. Further in silico analysis of the promoter regions of 24 upregulated genes predicted two motifs through MEME and five previously characterized cis-elements including CRE, TRE, EcRE, XRE-AhR and ARE. Functional analysis of the two predicted motifs and two different versions of ARE (named ARE1 and ARE2) in the promoter region of the flavone-inducible carboxylesterase gene CCE001j verified that the two motifs and ARE2 are not responsible for flavone induction of H. armigera counter-defense genes, whereas ARE1 is a new xenobiotic response element to flavone (XRE-Fla) and plays a decisive role in flavone induction of CCE001j. This study is of great significance for further understanding the antagonistic interaction between plants and herbivorous insects.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liying Fang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lixiang Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
11
|
Kang S, Zhu X, Wu Q, Wang S, Crickmore N, Zhang Y, Guo Z. Critical Analysis of Multi-Omic Data from a Strain of Plutella xylostella Resistant to Bacillus thuringiensis Cry1Ac Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11419-11428. [PMID: 36040024 DOI: 10.1021/acs.jafc.2c03618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid evolution of resistance in crop pests to Bacillus thuringiensis (Bt) products threatens their widespread use, especially as pests appear to develop resistance through a range of different physiological adaptations. With such a diverse range of mechanisms reported, researchers have resorted to multi-omic approaches to understand the molecular basis of resistance. Such approaches generate a lot of data making it difficult to establish where causal links between physiological changes and resistance exist. In this study, a combination of RNA-Seq and iTRAQ was used with a strain of diamondback moth, Plutella xylostella (L.), whose resistance mechanism is well understood. While some of the causal molecular changes in the resistant strain were detected, other previously verified changes were not detected. We suggest that while multi-omic studies have use in validating a proposed resistance mechanism, they are of limited value in identifying such a mechanism in the first place.
Collapse
Affiliation(s)
- Shi Kang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|