1
|
Chiappa G, Fassio G, Modica MV, Oliverio M. Potential Ancestral Conoidean Toxins in the Venom Cocktail of the Carnivorous Snail Raphitoma purpurea (Montagu, 1803) (Neogastropoda: Raphitomidae). Toxins (Basel) 2024; 16:348. [PMID: 39195758 PMCID: PMC11359391 DOI: 10.3390/toxins16080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Venomous marine gastropods of the superfamily Conoidea possess a rich arsenal of toxins, including neuroactive toxins. Venom adaptations might have played a fundamental role in the radiation of conoideans; nevertheless, there is still no knowledge about the venom of the most diversified family of the group: Raphitomidae Bellardi, 1875. In this study, transcriptomes were produced from the carcase, salivary glands, and proximal and distal venom ducts of the northeastern Atlantic species Raphitoma purpurea (Montagu, 1803). Using a gut barcoding approach, we were also able to report, for the first time, molecular evidence of a vermivorous diet for the genus. Transcriptomic analyses revealed over a hundred putative venom components (PVC), including 69 neurotoxins. Twenty novel toxin families, including some with high levels of expansion, were discovered. No significant difference was observed between the distal and proximal venom duct secretions. Peptides related to cone snail toxins (Cerm06, Pgam02, and turritoxin) and other venom-related proteins (disulfide isomerase and elevenin) were retrieved from the salivary glands. These salivary venom components may constitute ancestral adaptations for venom production in conoideans. Although often neglected, salivary gland secretions are of extreme importance for understanding the evolutionary history of conoidean venom.
Collapse
Affiliation(s)
- Giacomo Chiappa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Giulia Fassio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Via Gregorio Allegri 1, 00198 Rome, Italy;
| | - Marco Oliverio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| |
Collapse
|
2
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
3
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|